leetcode--- Minimum Height Trees

15 篇文章 0 订阅

For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.

Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).

You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.

Example 1:

Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]

    0
    |
    1
   / \
  2   3

return [1]

Example 2:

Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]

 0  1  2
  \ | /
    3
    |
    4
    |
    5

return [3, 4]

Show Hint
Note:

(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”

(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.

class Solution {
public:
    vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges) 
    {
        if(n == 1)
        {
            vector<int> a(1, 0);
            return a;
        }

        int degree[n];
        vector<int> G[n];
        memset(degree, 0, sizeof(degree));
        vector<int> r;

        int m = edges.size();
        for(int i=0; i<m; i++)
        {
            int u = edges[i].first;
            int v = edges[i].second;
            degree[u]++;
            degree[v]++;
            G[u].push_back(v);
            G[v].push_back(u);
        }

        for(int i=0; i<n; i++)
            if(degree[i] == 1)
                r.push_back(i);

        int cnt = n;
        while(cnt > 2)
        {
            vector<int> tmp;
            for(int i=0; i<r.size(); i++)
            {
                int u = r[i];
                cnt -= 1;
                degree[u] = 0;
                for(int j=0; j<G[u].size(); j++)
                {
                    int v = G[u][j];
                    degree[v]--;
                    if(degree[v] == 1)
                        tmp.push_back(v);
                }
            }
            r = tmp;
        }
        return r;
    }
};
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值