For a undirected graph with tree characteristics, we can choose any node as the root. The result graph is then a rooted tree. Among all possible rooted trees, those with minimum height are called minimum height trees (MHTs). Given such a graph, write a function to find all the MHTs and return a list of their root labels.
Format
The graph contains n nodes which are labeled from 0 to n - 1. You will be given the number n and a list of undirected edges (each edge is a pair of labels).
You can assume that no duplicate edges will appear in edges. Since all edges are undirected, [0, 1] is the same as [1, 0] and thus will not appear together in edges.
Example 1:
Given n = 4, edges = [[1, 0], [1, 2], [1, 3]]
0
|
1
/ \
2 3
return [1]
Example 2:
Given n = 6, edges = [[0, 3], [1, 3], [2, 3], [4, 3], [5, 4]]
0 1 2
\ | /
3
|
4
|
5
return [3, 4]
Show Hint
Note:
(1) According to the definition of tree on Wikipedia: “a tree is an undirected graph in which any two vertices are connected by exactly one path. In other words, any connected graph without simple cycles is a tree.”
(2) The height of a rooted tree is the number of edges on the longest downward path between the root and a leaf.
class Solution {
public:
vector<int> findMinHeightTrees(int n, vector<pair<int, int>>& edges)
{
if(n == 1)
{
vector<int> a(1, 0);
return a;
}
int degree[n];
vector<int> G[n];
memset(degree, 0, sizeof(degree));
vector<int> r;
int m = edges.size();
for(int i=0; i<m; i++)
{
int u = edges[i].first;
int v = edges[i].second;
degree[u]++;
degree[v]++;
G[u].push_back(v);
G[v].push_back(u);
}
for(int i=0; i<n; i++)
if(degree[i] == 1)
r.push_back(i);
int cnt = n;
while(cnt > 2)
{
vector<int> tmp;
for(int i=0; i<r.size(); i++)
{
int u = r[i];
cnt -= 1;
degree[u] = 0;
for(int j=0; j<G[u].size(); j++)
{
int v = G[u][j];
degree[v]--;
if(degree[v] == 1)
tmp.push_back(v);
}
}
r = tmp;
}
return r;
}
};