Given a set of candidate numbers ( C ) and a target number ( T ), find all unique combinations in C where the candidate numbers sums to T .
The same repeated number may be chosen from C unlimited number of times.
Note:
All numbers (including target) will be positive integers.
Elements in a combination (a 1, a 2, … , a k) must be in non-descending order. (ie, a 1 ≤ a 2 ≤ … ≤ a k).
The solution set must not contain duplicate combinations.
For example, given candidate set2,3,6,7and target7,
A solution set is:
[7]
[2, 2, 3]
class Solution {
public:
void dfs(int dep, int n, vector<vector<int> > &ans, vector<int> &tmp,
vector<int> &candidates, int target)
{
if(target == 0)
{
ans.push_back(tmp);
return;
}
for(int i=dep; i<n && target - candidates[i] >= 0; i++)
{
tmp.push_back(candidates[i]);
dfs(i, n, ans, tmp, candidates, target-candidates[i]);
tmp.pop_back();
}
}
vector<vector<int> > combinationSum(vector<int> &candidates, int target)
{
vector<vector<int> > ans;
vector<int> tmp;
int n = candidates.size();
sort(candidates.begin(), candidates.end());
dfs(0, n, ans, tmp, candidates, target);
return ans;
}
};