E2Echallenge参赛模型汇总

本文总结了E2E数据集的特点,规模大于Bagel等数据集,平均每个MR有多个reference。参赛模型分为seq2seq、data-driven、rule-based、template-based四类。经验表明解码时的beam rerank对seq2seq模型很重要,delexicalization对open vocabulary有效。最佳方法是基于规则或rerank的seq2seq。自动评价主要用词重叠指标,人工评价则涉及自然度和整体质量。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


E2E挑战赛任务就是根据一堆属性生成一句自然话术。该任务使用了新的E2E数据集,有提交的62个模型(方法),所以本文对相关的方法进行了归总,每类方法选出了一些代表,并进行简单介绍。

数据统计

  1. E2E数据集主要是描述餐馆的信息,有6个属性(slot),6个是可以枚举的,2个是open的(名字和地点)。
  2. 数据集规模上,比之前的Bagel、SF hotels/Resturants、RoboCup的数据集都要大,平均每个MR都有8.27个reference与之对应,所以表述上也更加丰富。
部分 MRs References
训练集 4862 42061
测试集 547 4672
验证集 630 4693
全集 6039 51426

参赛模型

baseline是TGen模型。参赛模型可以大致分为四类:seq2seq、data-driven、rule-based、template-based。

每类模型数量概况如下图:

​​​​​​在这里插入图片描述
每一类方法

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值