SVM是Support Vector Machines(支持向量机)的缩写,可以用来做分类和回归。SVC是SVM的一种Type,是用来的做分类的,SVR是SVM的另一种Type,是用来的做回归的。
接受老师的批评,首先介绍一下SVM的核心算法。
(一)最大分类间距
上图的那些分类线中,到底哪个是最优的呢?从直观上而言,这个分类线应该是最适合分开两类数据的直线。而判定“最适合”的标准:离这条直线距离最近的的点的距离间隔最近。SVM就是寻找这样一条分类边界(超平面)。因为以下的示例图都是以二维为例,所以我就没有引入超平面,而用分类边界的概念。
支持向量:支持向量就是离分类边界最近的点。如上图所示用绿色圆圈圈起来的就是支持向量,它决定分类边界。SVM的准则就是最大化这个Margin. Margin是支持向量的间距,如上图所示。怎么最大化这个间距呢,下面介绍一下: