SVM-SVC学习心得

本文介绍了SVM(支持向量机)的核心算法——最大分类间距,强调了SVM寻找最优分类边界的过程。通过支持向量的概念,解释了如何最大化分类间距,并将分类问题转化为二次最优化问题。文章还讨论了松弛变量在处理异常值和分类误差中的作用,以及参数C在平衡分类间距与错分率之间的关键角色。
摘要由CSDN通过智能技术生成

SVM是Support Vector Machines(支持向量机)的缩写,可以用来做分类和回归。SVC是SVM的一种Type,是用来的做分类的,SVR是SVM的另一种Type,是用来的做回归的。


接受老师的批评,首先介绍一下SVM的核心算法。

(一)最大分类间距

上图的那些分类线中,到底哪个是最优的呢?从直观上而言,这个分类线应该是最适合分开两类数据的直线。而判定“最适合”的标准:离这条直线距离最近的的点的距离间隔最近。SVM就是寻找这样一条分类边界(超平面)。因为以下的示例图都是以二维为例,所以我就没有引入超平面,而用分类边界的概念。


    支持向量:支持向量就是离分类边界最近的点。如上图所示用绿色圆圈圈起来的就是支持向量,它决定分类边界。SVM的准则就是最大化这个Margin.  Margin是支持向量的间距,如上图所示。怎么最大化这个间距呢,下面介绍一下:


评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值