算法分析之O表示法的总结

一、表示规则

1、常数项用O(1)表示

如果某算法无论要处理多大的数据量,总会至少消耗一定的固定时间,那么我们用常数项表示这段固定的时间。

对于某些常数c,正确的表示为:O(c)=O(1)。

2、算法的常量因子往往被忽略

如果某算法的一些任务执行相同数量的次数,可以忽略其常量因子。

对于某些常数c,正确的表示为:O(cT)=cO(T)=O(T)。

3、加法运算取最大值

如果某算法的一个任务在另一个任务之后顺序执行,取其中的最大值。

对于某些常数c,正确的表示为:O(T1)+O(T2)=O(T1+T2)=max(O(T1),O(T2))。

4、乘法的结果不需要改变,只需以更紧凑的方式表示

如果某算法的一个任务的执行引起另一个任务的迭代执行,取本规则。

对于某些常数c,正确的表示为:O(T1)O(T2)=O(T1T2)。


二、常见复杂度

1、O(1):从某数据集中获取第一个元素。

2、O(lgn):将某数据集分成两半,然后将分开的每一半再分成两半,以此类推。

3、O(n):遍历某数据集。

4、O(nlgn):将某数据集分成两半,然后将分开的每一半再分成两半,以此类推,与此同时遍历每一半的数据。

5、O(n^2):遍历某数据集的同时遍历另一个数量级相同的数据集。

6、O(2^n):为某数据集生成其可能的所有子集。

7、O(n!):为某数据集生成所有其可能的排列组合。


没有更多推荐了,返回首页