经典算法之折半查找

    对于以有序表表示的静态查找表,折半查找可以较好地实现数据量较大的查找。其时间复杂度为O(logn),因此可以较快地实现大量数据的检索,尤其是在多重循环中效果显著。

    折半查找的大致思想是:首先取查找表中间的元素m,将其与待寻找的数据e进行比较。如果相等,直接结束。如果m<e,则e一定在有序表的右半部分,然后将右半部分表作为新表,再次执行比较。如果m》e,则e一定在有序表的左半部分,然后将左半部分表作为新表,再次执行比较。下面是一个小例子

#include <stdio.h>
const int MAX_N=1000;
int main()
{
	int n,e,k[MAX_N];
	scanf("%d%d",&n,&e);
	for(int i=0;i<n;i++)
		scanf("%d",&k[i]);
	int l=0,r=n;
	bool flag=false;
	while(r-l>=1)
	{
		int m=(l+r)/2;
		if(k[m]==e)
		{
			puts("Get!");
			return 1;
		}
		else if(k[m]<e)
			l=m+1;
		else
			r=m;
	}		
	puts("Not Get!");
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值