ArcGIS之一影像格式的转换

ArcGIS之一影像格式的转换


作者:vashon

时间:20160229


步骤:

1、打开ArcMap ,依次展开工具“Conversion Tools”、“To Raster” ......如下图:


2、双击"Raster to Other Format(multiple)" :


3、点击input rasters 文件夹,选择需要输入的jpg文件:



4、点击“Add”,并选择输出路径Output workspace以及输出的Raster Format为tiff格式(该格式信息比较全且清晰):



5、点击ok,等待转换完成。完成后点击“data add”找到输出的影像数据:




6、添加输出的影像数据,这时数据有三个波段(双击“123.tif”可以看得到):




7、选中tif格式文件并add:



这时就得到了影像图,影像图可以放大缩小了还原默认大小等。这就是影像格式的转换过程。



### 如何在 ArcGIS Pro 中使用深度学习进行影像转换 #### 工具概述 ArcGIS Pro 提供了一套完整的工具链来处理深度学习任务中的影像数据准备、模型训练和预测应用。其中,`深度学习导出训练数据工具` 是用于生成适合机器学习框架(如 TensorFlow 或 PyTorch)使用的标注数据集的关键组件[^1]。 #### 数据准备流程 为了实现影像转换的目标,在 ArcGIS Pro 的工作流中需要完成以下几个核心操作: 1. **设置输入栅格** 需要在 `深度学习导出训练数据工具` 中指定输入栅格文件作为基础影像源。如果涉及多波段或多光谱影像,则可以通过 `附加输入栅格` 参数引入其他相关影像层。 2. **定义切片参数** 利用该工具的选项配置输出图像芯片的尺寸、重叠比例以及其他属性。这些参数直接影响最终生成的数据质量及其适配特定神经网络架构的能力。 3. **调用 prepare_data 函数** 将上述步骤产生的元数据传递至 Python 脚本环境下的 `arcgis.learn.prepare_data()` 方法,进一步整理成标准格式以便后续建模阶段加载使用。 ```python from arcgis.learn import prepare_data data = prepare_data( path_to_exported_tiles, chip_size=256, batch_size=8, model_architecture="unet" ) ``` 此处展示了如何通过代码接口读取由前序环节所生产的片段集合,并初始化一个适用于语义分割任务 (采用 U-Net 架构) 的批次迭代器实例。 #### 结果可视化与评估 除了基本的数据预处理之外,借助于 ArcGIS API for JavaScript 这样的前端库还可以增强交互体验效果。例如展示不同模式下地理实体间的关系或者动态调整渲染样式等功能特性均有助于深入理解转化后的成果表现形式[^2]。 最后值得一提的是,《基于ArcGIS Pro、Python、USLE、INVEST模型等多技术融合的生态系统服务构建生态安全格局技术》一文中提到的技术思路或许能够为更复杂的场景分析提供灵感来源[^3]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值