hdu 6513 Reverse It

狂化使你失去了除了dp以外的所有技能:

容易发现牌面的初始状态不会对结果造成影响。

那么我们将组合分类,有几种情况会造成计数重复:

1.两个矩形横向或者纵向相交在一起,这等价于除去交集外的一个或两个矩形;
2.两个矩形未相交呈L型,这等价于另两个矩形或一个矩形包含在另一个矩形的端点上;
3.两个矩形相交呈L型,这等价于两个对角相接的矩形;
4.两个矩形未相交且相连在一起,这等价于他们的并集,另一个较大的矩形。

f ( i , l , r ) f(i,l,r) f(i,l,r)表示第以 i i i行区间 [ l , r ] [l,r] [l,r]为顶边的矩形产生的多余的计数。按情况分析:

1:
f ( i , l , r ) = f ( i − 1 , l , r ) + ∑ k = m − r + 1 m − l + 1 k − ( m − r + 1 ) + 2 ∑ k = 1 n − i k f(i,l,r)=f(i-1,l,r)+\sum_{k=m-r+1}^{m-l+1}k-(m-r+1)+2\sum_{k=1}^{n-i}k f(i,l,r)=f(i1,l,r)+k=mr+1ml+1k(mr+1)+2k=1nik

2:
f ( i , l , r ) = f ( i − 1 , l , r ) + 2 ( n − i ) ( m − r ) + 2 ( n − i ) ( l − 1 ) f(i,l,r)=f(i-1,l,r)+2(n-i)(m-r)+2(n-i)(l-1) f(i,l,r)=f(i1,l,r)+2(ni)(mr)+2(ni)(l1)

3:
f ( i , l , r ) = f ( i − 1 , l , r ) + 2 ( n − i ) ( m − r ) + 2 ( n − i ) ( l − 1 ) f(i,l,r)=f(i-1,l,r)+2(n-i)(m-r)+2(n-i)(l-1) f(i,l,r)=f(i1,l,r)+2(ni)(mr)+2(ni)(l1)

4:
f ( i , l , r ) = f ( i − 1 , l , r ) + ( n − i ) + ( m − r ) + 4 ( n − i ) ( r − l ) f(i,l,r)=f(i-1,l,r)+(n-i)+(m-r)+4(n-i)(r-l) f(i,l,r)=f(i1,l,r)+(ni)+(mr)+4(ni)(rl)

f f f没有统计自己选自己产生的情况,所以最后计数也没必要计算这类情况。
结果即为 X − ∑ i = 1 n ∑ 1 ≤ l ≤ r ≤ m f ( i , l , r ) X-\sum_{i=1}^n\sum_{1\le l\le r\le m}f(i,l,r) Xi=1n1lrmf(i,l,r) X X X为组合总数。

#include<functional>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;
#define clr(a) memset(a,0,sizeof(a))
const ll md=1e9+7;
//--Container
//--
int n,m;ll dp[110][110],_dp[110][110][110];char cz[110];
inline int _dq(int l,int r){
    return (l+r)*(r-l+1)/2;
};
inline ll _ldq(ll l,ll r){
    return (l+r)*(r-l+1)/2;
};
bool cl(){
    int i,j,k,d,t;ll ts,rs;if(scanf("%d %d",&n,&m)==-1)return 0;
    for(i=0;i<n;scanf("%s",cz),++i);
    for(rs=0,clr(dp),i=n;i;--i)for(j=m;j;--j)dp[i][j]=dp[i+1][j]+m-j+1;
    for(clr(_dp),i=n;i;--i)for(j=1;j<=m;++j)for(k=j;k<=m;++k){
        _dp[i][j][k]=_dp[i+1][j][k]+4*(n-i)*(m-k)+4*(n-i)*(j-1);
        _dp[i][j][k]+=(n-i)+(m-k);
        _dp[i][j][k]+=_dq(m-k+1,m-j+1)-(m-k+1);
        _dp[i][j][k]+=_dq(1,n-i)*2;
        _dp[i][j][k]+=(n-i)*(k-j)*4;
        rs-=_dp[i][j][k];
    }
    for(++rs,ts=0,j=m;j;--j)for(i=n;i;--i){
        rs+=dp[i][j]*ts;if(dp[i][j]>1)rs+=_ldq(1,dp[i][j]-1);ts+=dp[i][j];rs+=dp[i][j];
    }
    printf("%I64d\n",rs);
    return 1;
};
int main(){
#ifndef ONLINE_JUDGE
    freopen("in.txt","r",stdin);
    freopen("out.txt","w",stdout);
#endif // ONLINE_JUDGE
    while(cl());
    return 0;
};
内容概要:本文档详细介绍了一个利用Matlab实现Transformer-Adaboost结合的时间序列预测项目实例。项目涵盖Transformer架构的时间序列特征提取与建模,Adaboost集成方法用于增强预测性能,以及详细的模型设计思路、训练、评估过程和最终的GUI可视化。整个项目强调数据预处理、窗口化操作、模型训练及其优化(包括正则化、早停等手段)、模型融合策略和技术部署,如GPU加速等,并展示了通过多个评估指标衡量预测效果。此外,还提出了未来的改进建议和发展方向,涵盖了多层次集成学习、智能决策支持、自动化超参数调整等多个方面。最后部分阐述了在金融预测、销售数据预测等领域中的广泛应用可能性。 适合人群:具有一定编程经验的研发人员,尤其对时间序列预测感兴趣的研究者和技术从业者。 使用场景及目标:该项目适用于需要进行高质量时间序列预测的企业或机构,比如金融机构、能源供应商和服务商、电子商务公司。目标包括但不限于金融市场的波动性预测、电力负荷预估和库存管理。该系统可以部署到各类平台,如Linux服务器集群或云计算环境,为用户提供实时准确的预测服务,并支持扩展以满足更高频率的数据吞吐量需求。 其他说明:此文档不仅包含了丰富的理论分析,还有大量实用的操作指南,从项目构思到具体的代码片段都有详细记录,使用户能够轻松复制并改进这一时间序列预测方案。文中提供的完整代码和详细的注释有助于加速学习进程,并激发更多创新想法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值