狂化使你失去了除了dp以外的所有技能:
容易发现牌面的初始状态不会对结果造成影响。
那么我们将组合分类,有几种情况会造成计数重复:
1.两个矩形横向或者纵向相交在一起,这等价于除去交集外的一个或两个矩形;
2.两个矩形未相交呈L型,这等价于另两个矩形或一个矩形包含在另一个矩形的端点上;
3.两个矩形相交呈L型,这等价于两个对角相接的矩形;
4.两个矩形未相交且相连在一起,这等价于他们的并集,另一个较大的矩形。
设 f ( i , l , r ) f(i,l,r) f(i,l,r)表示第以 i i i行区间 [ l , r ] [l,r] [l,r]为顶边的矩形产生的多余的计数。按情况分析:
1:
f
(
i
,
l
,
r
)
=
f
(
i
−
1
,
l
,
r
)
+
∑
k
=
m
−
r
+
1
m
−
l
+
1
k
−
(
m
−
r
+
1
)
+
2
∑
k
=
1
n
−
i
k
f(i,l,r)=f(i-1,l,r)+\sum_{k=m-r+1}^{m-l+1}k-(m-r+1)+2\sum_{k=1}^{n-i}k
f(i,l,r)=f(i−1,l,r)+∑k=m−r+1m−l+1k−(m−r+1)+2∑k=1n−ik
2:
f
(
i
,
l
,
r
)
=
f
(
i
−
1
,
l
,
r
)
+
2
(
n
−
i
)
(
m
−
r
)
+
2
(
n
−
i
)
(
l
−
1
)
f(i,l,r)=f(i-1,l,r)+2(n-i)(m-r)+2(n-i)(l-1)
f(i,l,r)=f(i−1,l,r)+2(n−i)(m−r)+2(n−i)(l−1)
3:
f
(
i
,
l
,
r
)
=
f
(
i
−
1
,
l
,
r
)
+
2
(
n
−
i
)
(
m
−
r
)
+
2
(
n
−
i
)
(
l
−
1
)
f(i,l,r)=f(i-1,l,r)+2(n-i)(m-r)+2(n-i)(l-1)
f(i,l,r)=f(i−1,l,r)+2(n−i)(m−r)+2(n−i)(l−1)
4:
f
(
i
,
l
,
r
)
=
f
(
i
−
1
,
l
,
r
)
+
(
n
−
i
)
+
(
m
−
r
)
+
4
(
n
−
i
)
(
r
−
l
)
f(i,l,r)=f(i-1,l,r)+(n-i)+(m-r)+4(n-i)(r-l)
f(i,l,r)=f(i−1,l,r)+(n−i)+(m−r)+4(n−i)(r−l)
f
f
f没有统计自己选自己产生的情况,所以最后计数也没必要计算这类情况。
结果即为
X
−
∑
i
=
1
n
∑
1
≤
l
≤
r
≤
m
f
(
i
,
l
,
r
)
X-\sum_{i=1}^n\sum_{1\le l\le r\le m}f(i,l,r)
X−∑i=1n∑1≤l≤r≤mf(i,l,r),
X
X
X为组合总数。
#include<functional>
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
using namespace std;
typedef long long ll;
#define clr(a) memset(a,0,sizeof(a))
const ll md=1e9+7;
//--Container
//--
int n,m;ll dp[110][110],_dp[110][110][110];char cz[110];
inline int _dq(int l,int r){
return (l+r)*(r-l+1)/2;
};
inline ll _ldq(ll l,ll r){
return (l+r)*(r-l+1)/2;
};
bool cl(){
int i,j,k,d,t;ll ts,rs;if(scanf("%d %d",&n,&m)==-1)return 0;
for(i=0;i<n;scanf("%s",cz),++i);
for(rs=0,clr(dp),i=n;i;--i)for(j=m;j;--j)dp[i][j]=dp[i+1][j]+m-j+1;
for(clr(_dp),i=n;i;--i)for(j=1;j<=m;++j)for(k=j;k<=m;++k){
_dp[i][j][k]=_dp[i+1][j][k]+4*(n-i)*(m-k)+4*(n-i)*(j-1);
_dp[i][j][k]+=(n-i)+(m-k);
_dp[i][j][k]+=_dq(m-k+1,m-j+1)-(m-k+1);
_dp[i][j][k]+=_dq(1,n-i)*2;
_dp[i][j][k]+=(n-i)*(k-j)*4;
rs-=_dp[i][j][k];
}
for(++rs,ts=0,j=m;j;--j)for(i=n;i;--i){
rs+=dp[i][j]*ts;if(dp[i][j]>1)rs+=_ldq(1,dp[i][j]-1);ts+=dp[i][j];rs+=dp[i][j];
}
printf("%I64d\n",rs);
return 1;
};
int main(){
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif // ONLINE_JUDGE
while(cl());
return 0;
};