自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

Yan

https://github.com/Yannnnnnnnnnnn

  • 博客(226)
  • 资源 (5)
  • 论坛 (1)
  • 收藏
  • 关注

原创 2020给自己立一个FLAG

背景2019年马上就要结束了,2020已经迫在眉睫。回顾2019年以来,我总是在博客上写一些比较无聊且没有技术含量的博客。因此,在博客上给自己立下一个Flag:2020年要多些技术硬核类的博客!!结语2020加油!...

2019-12-31 10:55:51 411

原创 三维视觉论文阅读:Weifeng2016单目深度估计

论文Single-Image Depth Perception in the Wild摘要单张影像恢复深度需要大量每个像素都具有深度值的数据集,这极大提高了数据集的制作难度(尤其是在室外环境),限制了单目深度估计的应用范围。这篇论文脑洞突破天际,作者认为像素的深度值准确值意义并不大,反而像素间的相对深度关系更加重要。如下图所示,作者展示了几张图片,每张图片上标注两个点。显然大多数情况下,人脑都能第一时间判断那个点更近,那个点更远,却难以具体量化两个点之间的距离。当然也存在一些情况下,无法分清楚谁更

2020-12-01 14:59:21 2

原创 三维视觉论文阅读:Eigen2015单目深度估计

论文Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture摘要相比与Eigen2014,Eigen2015一方面考虑使用网络同时估计深度、法向以及语义信息,另一方面还对网络进行了一定程度的升级,更深更复杂。网络模型下图展示了文章中提出的网络模型,其共可以分为三层。第一层为特征提取层,无论是用AlexNet还是VGGNet,都是先提取特征,得

2020-11-29 22:29:38 8

原创 计算机视觉基石---obj文件简要介绍

背景obj文件格式是与ply文件类似的一种文件格式,也主要用于保存三维模型;但是obj能够支持更加复杂的操作,其中我们常用的是纹理坐标、线段,这些也是本次博客中着重介绍的内容。obj的其他特性过于复杂,且不常用,就直接跳过了。参考资料https://en.wikipedia.org/wiki/Wavefront_.obj_filehttps://people.cs.clemson.edu/~dhouse/courses/405/docs/brief-obj-file-format.htmlob

2020-11-26 11:11:30 12

原创 三维视觉论文阅读:Eigen2014单目深度估计

摘要论文《Depth Map Prediction from a Single Image using a Multi-Scale Deep Network》论文其他部分,明日再写,今天先搞定公式。损失函数不得不说论文里的损失函数让人看得乱七八糟的,根本搞不懂。经过我两个夜晚的思考,终于把公式看懂了,真是难得啊,特此记录一下。首先记di=logyi∗−logyid_i=logy_i^*-logy_idi​=logyi∗​−logyi​,d‾=α(y,y∗)=1n∑di\overline{d}=\a

2020-11-25 00:12:59 28

原创 Pytorch(1.4.0+):GRU原理及实现

背景GRU是循环神经网络中一个非常具有性价比的工具,学习了解是非常有必要的。在本博客中,就将简要介绍一下GRU的原理及其使用Pytorch实现的具体代码。参考资料https://pytorch.org/docs/stable/generated/torch.nn.GRUCell.html#torch.nn.GRUCellhttps://github.com/YoYo000/MVSNet/blob/master/mvsnet/convgru.pyhttps://zhuanlan.zhihu.com

2020-11-03 15:50:11 65

原创 PyTorch:日常使用笔记及踩坑

1. 半精度Nan参考资料:https://blog.csdn.net/one_six_mix/article/details/86367086设置优化器eps参数,保证除法不出现除0操作。optim.Adam(model.parameters(), lr=1e-3, eps=1e-4)

2020-10-21 15:58:16 15

原创 Pytorch(1.2.0+):多机单卡并行实操(MNIST识别)

背景简单实际操作一下用Pytorch(1.2.0+)进行多机单卡并行训练,可能就不太关注原理了。参考https://blog.csdn.net/u010557442/article/details/79431520https://zhuanlan.zhihu.com/p/116482019https://blog.csdn.net/gbyy42299/article/details/103673840https://blog.csdn.net/m0_38008956/article/detai

2020-10-13 11:49:42 78

原创 Blender:导入obj渲染及导出图片+深度图+法向图

背景数据样本是深度学习的基础,尤其是针对几何类的深度学习问题。目前网上已经有许许多多的数据集,其中尤其多的是用Blender得到的,例如BlendedMVS。在本博客中,只是简单的尝试一下用Blender渲染一下模型,然后导出影像和深度图。PS. 本博客其实参考了一些博客,但是由于写脚本的参考资料丢失,只能等以后补充。结果流程1. 导入obj模型首先第一步必然是导入obj模型,代码如下,仅仅需要指定obj文件所在文件夹即可。import bpy import os # folde

2020-10-09 21:07:40 418

原创 Ubuntu16.04:proj(5.2.0)+geos(3.7.1)+gdal(2.4.0)源码编译

Referencehttps://gis.stackexchange.com/questions/317109/build-gdal-with-proj-version-6Method#!/usr/bin/env bashGDAL configuration script for Ubuntu 18.0.4Based upon https://grasswiki.osgeo.org/wiki/Compile_and_Install_Ubuntu./autogen.shMYCXXFLAGS=’-

2020-10-09 21:07:24 54

原创 计算机视觉--opencv圆点提取

参考资料https://blog.csdn.net/app_12062011/article/details/51953030https://blog.csdn.net/gggttt222/article/details/92976511https://blog.csdn.net/Ketal_N/article/details/88829741https://docs.opencv.org/3.4.11/d9/d0c/group__calib3d.html#gad1205c4b803a21597c7

2020-09-15 20:10:19 171

原创 计算机视觉基石--PLY文件基础与读写

参考资料https://github.com/ddiakopoulos/tinyplyhttp://paulbourke.net/dataformats/ply/PLY文件介绍1 PLY文件基本格式PLY是计算机图形学中一个常用的格式,主要用于保存多边形(通常是三角形),一般有ASCII保存方式和二进制保存方式两种,其中后者的读写效率更佳。下图展示了一个PLY文件中保存的多个三角形。在PLY文件中,最主要的属性是顶点、三角面以及一些其他的附带属性(法向、颜色等等)。同时,为了保证PLY文件不

2020-08-12 09:21:20 187

转载 Windows10-Linux18.04子系统:界面可视化及CMake配置笔记

参考资料https://intellij-support.jetbrains.com/hc/en-us/community/posts/360003413779-Troubles-with-WSL-toolchain-Test-CMake-run-finished-with-errors-https://blog.csdn.net/langliu/article/details/80277309https://blog.csdn.net/weixin_38169562/article/details/

2020-05-12 01:13:35 449

原创 PyTorch:学习conv1D,conv2D和conv3D

背景CNN是深度学习的重中之重,而conv1D,conv2D,和conv3D又是CNN的核心,所以理解conv的工作原理就变得尤为重要。在本博客中,将简单梳理一下这三种卷积,以及在PyTorch中的具体实现。参考https://pytorch.org/docs/master/nn.html#conv1dhttps://pytorch.org/docs/master/nn.function...

2020-03-06 18:16:10 1581

原创 PyTorch(1.3.0+):学习torch.nn.functional.grid_sample

背景最近在学习SfMLearner,其中一个非常重要的部分是Differentiable depth image-based rendering,翻译过来就是基于深度的可微图像渲染。这看起来好像很高大上,但是换句话说其实就是要根据深度,在当前影像上生成另一个视角的影像。不多说这个了,这其中一个比较重要的部分就是,双线性采样,论文里图示如下,ItI_tIt​是目标影像(即前文说的另一个视角的影像)...

2020-02-21 20:39:13 2026 7

原创 PyTorch:模型参数读取与设置--以FlowNetSimple为例

一、背景在“搞”深度学习时,除非富如东海,往往都不会直接用大量数据来训练一个网络;一般情况下,比较省钱且高效的思路是利用一些预训练的模型,并在其基础上进行再训练优化,达到自己的目的。因此,在本博客中将简单记录一下,如何在PyTorch基础上读取预训练模型的参数,并添加到自己的模型中去,从而尽可能减少自己的计算量。为了直接讲明整个过程,本文设计了一个实验,首先设计了一个网络,其前半部分与Flo...

2020-02-19 15:16:21 591

原创 PyTorch(1.3.0+):基于UNet和camvid数据集的道路分割

背景语义分割是深度学习中的一个非常重要的研究方向,并且UNet是语义分割中一个非常经典的模型。在本次博客中,我尝试用UNet对camvid dataset数据集进行道路分割,大致期望的效果如下:原图道路分割效果本博客的代码参考了以下链接:https://github.com/milesial/Pytorch-UNethttps://github.com/qubvel/segment...

2020-02-13 19:56:26 3639 62

原创 PyTorch:基于循环神经网络利用sin预测cos

背景之前在学习深度学习的时候,由于只是做一些图像处理相关的东西,因此关注的重心都在CNN上;但是目前,RNN也逐渐在图像处理上发挥了非常重要的作用,所以学习并了解一些RNN的基础和原理也是非常重要。本次,将利用sin函数值预测cos函数值,分别用RNN、GRU和LSTM进行了测试。我也得到了一些结论,但是目前我对循环神经网络理解还比较浅薄,所以可能也不一定对。最后,本文的大部分代码参考了以下...

2020-02-11 14:50:18 334

原创 PyTorch:Digit Recognizer比赛后续-训练优化

背景上篇博客尝试了数据增强,取得了不错的效果,但是结果仍旧不是特别好。所以这次又从训练的角度进行了一些优化,包括:BatchNorm使用变化的学习率继续增加epoch最终实验结果还是非常棒的,代码和结果如下。目前已经没有动力继续训练了,因为原则上的方法基本上都已经考虑到了。后续如果要继续改进,无非换更深的网络(利用ResNet18),和增加更多的迭代次数。https://www.k...

2020-02-07 10:42:26 126

原创 PyTorch:Digit Recognizer比赛后续-数据增强

背景上次利用PyTorch做了一个模型以后,训练的结果只有94%左右,并不是特别好。本次进行了一些改进:增加训练次数添加数据增强代码链接:https://www.kaggle.com/yannnnnnnnnnnn/kernel5d66c76231 version9结果:方法1、增加训练次数这个没啥好说的,直接修改epoch=30即可。2、增加数据增强增加数据增强,首先...

2020-02-06 14:00:54 178

原创 PyTorch:Digit Recognizer比赛

背景自从上次学了PyTorch以后,又丢下了很长一段时间,都快忘光了。这次刷了一遍《Dive into DL PyTorch》后,又尝试做了Kaggle上的Digit Reconizer比赛。参考资料https://tangshusen.me/Dive-into-DL-PyTorch/#/https://www.kaggle.com/kanncaa1/pytorch-tutorial-fo...

2020-02-05 17:04:42 410

原创 读后感--《魔鬼数学:大数据时代,数学思维的力量》

背景这是在学习数学看的第一本科普类数学书,大概记录了一下看每章的读后感,记录一下。第一章第一部分简单的讲解了线性模型,泰勒展开,线性回归,大数定理以及负数等等概念;用一些实际生活中的例子来帮助读者理解这些概念,以及为什么数学家会从实际生活中抽象出这些概念。第二章这一章有点晦涩,主要介绍了假设检验及其局限性,即小概率事件并不是不可能发生,只是发生概率较小而已。另外本章还简单介绍了贝...

2020-02-04 22:39:50 244

原创 Pytorch : Run FlowNet2 with Pytorch

MethodInstall Ubuntu16.04Install NVIDIA Driver and CUDA 10.0Install Anaconda python3.7Change Anaconda MirrorInstall Pytorch 1.0.1 with CUDA 10.0conda install pytorch==1.0.1 torchvision==0.2.2 ...

2019-12-06 16:29:28 602 7

原创 偷懒性开发:gitblid+jenkins持续性开发与集成

背景最近在做项目的时候,由于“每次commit代码后,还需要人工编译代码,然后再跑测试”,感觉特别浪费时间和麻烦。因此准备开始偷懒,就上网浏览了一下有没有偷懒的方法。果然,程序员偷懒是普世道理,我很快就找到了一些比较流行的方法:gitlab+CI/jenkinsgitblid+jenkins考察了一下后发现,gitlab固然漂亮,但是其确不能在windows下部署(开发环境为Windo...

2019-11-22 12:14:28 73

原创 Python:画图笔记

问题1:调整ColoBar的高度与图片一致参考链接:https://stackoverflow.com/questions/18195758/set-matplotlib-colorbar-size-to-match-graph代码:import matplotlib.pyplot as pltfrom mpl_toolkits.axes_grid1 import make_axes_lo...

2019-09-12 13:42:04 230

原创 Ubuntu16.04 : OpenEXR安装

背景本来安装openexr不应该成为一个问题的,但是运气背的时候(重装系统等等),总会遇到一些奇奇怪怪的问题。博主在重装了Ubuntu16.04后,再次安装openexr python bindings时,遇到了以下错误:Builiding wheel for OpenEXR (setup.py) ... errorERROR : Command errored out with exit...

2019-08-28 21:53:38 1428

原创 Python:多进程--以求和为例

背景python是一个非常好用的语言,当然也有非常多的不好的地方,其中一个最恼火的事情大概就是效率吧。所以本次博客中主要记录如何用python进行多进程编程.后文中以一个求和问题为例,简单介绍一下用多进程进行求和为例,由于其中有注释,我就不做过多解释。参考https://www.liaoxuefeng.com/wiki/1016959663602400/1017628290184064h...

2019-08-07 18:19:23 510

原创 Python:exr图片读写

背景exr图片是一种开放标准的高动态范围图像格式,也算比较常用吧。本文简单记录一下,如何用python读取exr文件。代码获取exr图片的属性import OpenEXRfile = OpenEXR.InputFile(image_path)print(file.header())该代码片段能够获取exr图片许多重要的属性,以下给出了一些例子{'displayWindow'...

2019-08-07 17:52:59 2261

原创 Python:PIL&numpy学习笔记

简单记录一下最近学习python的笔记,主要与PIL和numpy有关。不过说回来,网上资料千千万,比如回头看文档。PIL Document:https://pillow.readthedocs.io/en/stable/index.htmlNumpy Document:https://wizardforcel.gitbooks.io/ts-numpy-tut/content/...

2019-08-02 13:36:48 80

转载 C++:Ubuntu下创建文件夹

参考https://blog.csdn.net/Sway_2012/article/details/8651477https://blog.csdn.net/u010555688/article/details/51219700代码#include <sys/stat.h>#include <sys/types.h> int main(){ std::s...

2019-07-26 18:26:26 1264

原创 RealSense:获取左右相机

Code#include <librealsense2/rs.hpp> // Include RealSense Cross Platform API#include "example.hpp" // Include short list of convenience functions for rendering#include <opencv2/op...

2019-07-25 10:55:41 797

原创 Deepin:RealScene开发环境配置

背景主要记录在Deepin下配置RealScene的开发环境。步骤安装一些必要库sudo apt-get install freeglut3 freeglut3-devsudo apt-get install mesa-common-dev mesa-utils配置环境git clone https://github.com/IntelRealSense/librealse...

2019-07-24 18:43:10 174 2

原创 Deepin:安装RealSense

背景Deepin是一份非常好用的桌面系统,但是其对开发人员十分不友好,很多在Ubuntu下能够愉快的应用的库都不能直接安装。在本博客中,主要记录为安装RealSense,本人所采取的方法和遇到的坑。参考https://www.cnblogs.com/boyen/p/8401616.htmlhttps://blog.csdn.net/THMAIL/article/details/81989...

2019-07-24 15:18:41 103

原创 PyTorch:基于FastAI的猫狗识别

背景上次自己用PyTorch对AlexNet进行猫狗识别取得了不错效果。后续我又继续使用Resnet50进行猫狗分类,但是却没有取得较好的效果,想来还是自己炼丹的技巧太差了。因此,后续决定使用FastAI进行训练(FastAI封装了很多炼丹技巧),最后效果还不错,Kaggle的分数为0.05779,已经可以挤进前100了;相比上次,效果还是很不错的。代码(基本抄的参考链接)https:/...

2019-05-19 19:24:47 727 3

原创 Ubuntu16.04:PyTorch&FastAI

背景在Ubunut上安装好各种驱动后,接以下就可以开始安装pytorch和fastai。流程1、安装Anaconda由于Anaconda中已经封装好了许多python相关工具,所以我也直接下载了Anaconda 3.72、安装pip3安装完Anaconda后,直接在控制台上输入python3,会直接输出python3.7。但是此时pip3尚未对应python3.7;如果用sudo...

2019-05-19 14:16:14 254

原创 Ubuntu16.04:NVIDIA cuda10.0安装

背景之前曾说过使用sudo ubuntu-drivers devices来安装显卡驱动,这样可以保证基本上不出大问题。然而世界上的事情都是舍不得孩子套不住狼;使用这种默认方法安装的驱动版本太低,仅仅能安装cuda8.0,实在难以想象。所以我决定重新安装一次ubuntu系统,然后从头安装一次驱动,并按照cuda10。参考教材:https://www.cnblogs.com/fanminhao/...

2019-05-18 13:59:25 11835

原创 CGAL:学习CGAL

背景CGAL是一个非常有用的库,但是学习起来非常痛苦。为此,我们计划通过一些小的demo,逐渐学习CGAL的使用方法。目前,由于我们还缺少对CGAL的整体把握,所以demo没有连贯性,且难度飘忽不定。不过随着我们的理解,demo肯定会越写越好。到现在为止,我们已经写了7个左右的dmeo,使用CGAL解决我们遇到的一些小问题,大致如下:代码我们代码的链接如下:https://github....

2019-05-14 19:58:28 6607 4

原创 PyTorch:基于AlexNet的猫狗识别

背景猫狗识别是学习CNN中最有趣的一个应用,本次我在Kaggle上的“Dogs vs. Cats Redux”进行了一次尝试。考虑到训练速度和实验的简易性,我使用了比较简单的AlexNet,并且还用了对应ImageNet的预训练模型(https://github.com/Cadene/pretrained-models.pytorch)。因此,下文中将按照数据处理、模型预处理、训练和测试结果几...

2019-05-09 20:46:47 2721

原创 PyTorch:基于CNN的数字识别(MNIST)

背景之前尝试了直接使用全链接直接进行数字识别,效果虽然也说的过去,但是一旦使用我自己写的数字,预测的效果瞬间就不太行了。所以本次又尝试了一下使用卷积神经网络进行数字识别,需要注意的是本博客中的网络结构是随便设置的。代码链接:https://github.com/Yannnnnnnnnnnn/learnPyTorch/tree/master/trainMNIST/conv一、训练train_...

2019-05-07 11:08:04 2390 7

原创 PyToch:基于神经网络的数字识别(MNIST数据集)

背景最近在学习PyTorch和深度学习,所以决定先用MNIST数据集试试手,利用神经网络做一个简单的数字识别。参考代码来源于:https://github.com/udacity/deep-learning-v2-pytorch/tree/master/intro-to-pytorch需要注意的是本文的神经网络中只使用了全链接层,只是为了理解PyTorch而进行的一个非常简单的实验。以下...

2019-05-06 20:44:51 479

稀疏矩阵LM

SparseLM VS2010 Release X64

2016-03-30

osg3.0.0的vs2010的64

osg的vs2010的64位版本,大家免费下载

2016-01-04

osg3.0.0的vs2010的32

osg的32位版本,大家免费下载就好了。

2016-01-04

GPU高性能编程CUDA实战中文

中文版的CUDA开发指南,可以快速的入门,从而对CUDA有一个大致的了解。

2015-12-28

CUDA by Example: An Introduction to General-Purpose GPU Programming

分享一个CUDA的书籍,唯一遗憾的是英语版的,但是应该并不影响使用。

2015-07-31

Stone_Yannn的留言板

发表于 2020-01-02 最后回复 2020-03-08

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人 TA的粉丝

提示
确定要删除当前文章?
取消 删除