输入描述:
输入为两行。 第一行一个整数n(1 <= n <= 100000),表示一共有n个元素 第二行为n个数,即每个元素,每个整数都在32位int范围内。以空格分隔。
输出描述:
所有连续子数组中和最大的值。
输入例子:
3 -1 2 1
输出例子:
3
动态规划
设sum[i]为以第i个元素结尾且和最大的连续子数组。假设对于元素i,所有以它前面的元素结尾的子数组的长度都已经求得,那么以第i个元素结尾且和最大的连续子数组实际上,要么是以第i-1个元素结尾且和最大的连续子数组加上这个元素,要么是只包含第i个元素,即sum[i] = max(sum[i-1] + a[i], a[i])。可以通过判断sum[i-1] + a[i]是否大于a[i]来做选择,而这实际上等价于判断sum[i-1]是否大于0。由于每次运算只需要前一次的结果,因此并不需要像普通的动态规划那样保留之前所有的计算结果,只需要保留上一次的即可,因此算法的时间和空间复杂度都很小。
import java.util.Scanner;
//遍历一个数组,求最大子数组和
public class Main {
public static void main(String[] args) {
Scanner s = new Scanner(System.in);
int num = s.nextInt();
int[] arr = new int[num];
for(int i=0;i<num;i++){
arr[i]=s.nextInt();
}
int max=arr[0];
int result=arr[0];
for(int i=0;i<num;i++){
if(i==0){
result=arr[i];
}else{
if(result>0){
result+=arr[i];
}else{
result=arr[i];
}
}
if(result>max){
max=result;
}
}
System.out.println(max);
}
}