矩阵与向量的乘积的两种理解

矩阵与向量乘积的两种理解

1. 给定一个线性方程组,等价于它的常数向量表示成各未知量与其系数向量的线性组合形式:


若把三个系数向量表示成一个矩阵,三个未知量用一个向量表示(可是为什么要这么表示?),如下所示:

并且用A表示上面的矩阵,x表示上面的向量,如上图所示

将矩阵A的元素用三个列向量表示,则矩阵A可以表示为行向量的形式:B= (u, v, w)

矩阵A与向量x的乘积可以表示为向量x的转置(向量x可以看做三行一列的矩阵)与行向量B的点乘:

2. 上述方程组也可以表示为如下点乘形式:

                    《=》                    

这就诱导了矩阵乘以向量的另一种定义,矩阵与向量的乘积可以表示为未知量行向量分别于系数行向量向量组成的矩阵A的点乘形式:

矩阵与向量的乘积,以及后面矩阵与矩阵的乘积的核心都是向量的点乘。
————————————————
版权声明:本文为CSDN博主「洪流之源」的原创文章,遵循 CC 4.0 BY-SA 版权协议,转载请附上原文出处链接及本声明。
原文链接:https://blog.csdn.net/weicao1990/article/details/79358685

  • 3
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
作为一种重要的身份认证的手段,人脸识别已经广泛地应用于管理、安全等各个领域。人脸识别的一个关键性的问题是特征抽取,即如何从众多的特征中寻找最有效的特征。子空间分析法是一种有效的特征抽取方法,而本文所研究讨论的非负矩阵分解(Non-negative Matrix Factorization, NMF)具有一些独特的优点,成为构建特征子空间的一种有效的方法。 非负矩阵分解是一种新的矩阵分解方法,它将一个非负矩阵分解为左右两个非负矩阵乘积。由于分解前后的矩阵中仅仅包含非负元素,因此原来矩阵中的列向量可解释为对左矩阵中所有列向量(称基向量)的加权和;而权重系数为右矩阵中对应列向量中的元素。这种基于基向量组合的表示形式具有直观的语义解释,反映了人们思维中局部构成整体的概念。与一般矩阵分解方法相比,NMF具有其独特的优点。例如实现起来比较简单,分解的形式和结果具有实际的物理意义等。典型的非监督学习算法,如主分量分析(PCA)、矢量量化(VQ)、独立分量分析(ICA)、因子分析(FA)等,均可以理解为对原始数据矩阵在一定条件限制下进行分解。本文的非负矩阵分解(NMF)算法与上述算法模型类似,是国际上新近提出的一种矩阵分解方法。与其他方法相比,NMF特殊之处在于其对于矩阵分解过程的非负限制,这会得到原始数据基于部分的表示,从而能更好的反映原始数据的局部特征,NMF的这一特性使得其可在诸多领域的应用得到很好的效果。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值