构建生成式AI Agents,高效应对运营挑战

近期,亚马逊云科技宣布Amazon Bedrock现已在Amazon SageMaker Unified Studio中全面可用。

面对需要管理日益增长的数据量、系统复杂度和客户互动需求,各规模企业都承受着提升运营效率的巨大压力。人工操作流程和零散信息源可能会造成管理困难,拖慢决策速度,限制团队专注于更高价值的工作。生成式AI Agents则为企业提供了一项强大解决方案,通过自动与企业系统对接、执行任务并提供即时见解,从而帮助企业在不增加复杂性的前提下,扩展运营规模。

Amazon SageMaker Unified Studio中的Amazon Bedrock通过提供统一服务来构建AI驱动的解决方案,集中管理用户数据并支持自然语言交互,从而有效应对上述挑战。它与现有应用程序集成,并引入Amazon Bedrock的基础模型(FMs)、提示词、知识库、Agents、流程、评估和防护等多项关键功能。用户可以通过其组织的单点登录(SSO)方式访问这些AI功能,与团队成员协作,并优化AI应用程序,而无需访问亚马逊云科技管理控制台。

用于自动化工作流的

生成式AI驱动Agents

通过Amazon SageMaker Unified Studio中的Amazon Bedrock,您可以创建和部署可与企业内部应用程序、数据库和第三方系统集成的生成式AI Agents,从而在整个技术栈中实现自然语言交互。对话Agents在复杂的信息系统和用户易于理解的信息之间架起沟通桥梁。通过使用Amazon Bedrock的功能和Amazon Bedrock知识库,Agents可以连接到诸如JIRA API等数据源,以实时跟踪项目状态、检索客户信息、更新项目任务和管理偏好设置。

销售和营销团队可以快速访问客户信息及会议偏好,项目经理则能高效管理JIRA任务和时间线,这一简化的流程提高了整个组织的生产力和客户互动效率。

生成式AI Agents解决方案的工作流程如下图所示。

解决方案概述

Amazon Bedrock借助Amazon SageMaker Unified Studio,为构建和共享生成式AI应用程序提供了一个受管控的协作环境,例如以下为一项实施客户管理Agents的解决方案。

  • 可以利用Amazon Bedrock对话应用程序构建Agents对话功能,并将其与使用Amazon Lambda和Amazon API Gateway等其他亚马逊云科技服务快速构建的功能集成。

  • Amazon SageMaker Unified Studio结合Amazon DataZone,通过其集成服务提供全面的数据管理解决方案。组织管理员可以管理成员对Amazon Bedrock模型和功能的访问权限,从而确保身份管理的安全性和访问控制的精细性。

Amazon Lambda:

https://aws.amazon.com/lambda/

Amazon API Gateway:

https://aws.amazon.com/api-gateway/

Amazon DataZone:

https://aws.amazon.com/datazone/

在深入探讨如何部署AI Agents之前,下文将先梳理架构关键步骤,如下图所示。

工作流程如下。

1.用户通过其组织在Amazon IAM Identity Center中的SSO,登录到Amazon SageMaker Unified Studio,然后使用自然语言与对话应用程序进行交互。

2.Amazon Bedrock对话应用程序使用函数,通过Amazon API Gateway的端点从数据库中检索JIRA状态和客户信息。

3.对话应用程序使用Amzon API Gateway进行身份验证,以及Amazon Secrets Manager提供的随机API密钥安全访问端点,并根据用户请求触发Lambda函数。

4.Lambda函数通过使用Agents提供的所需参数调用JIRA API或数据库来执行操作,Agents具备以下功能:

  • 提供简要的客户概述

  • 列出最近的客户互动

  • 检索客户的会议偏好

  • 检索项目的未结JIRA工单

  • 更新JIRA工单的截止日期

准备条件

要实施此解决方案,您需要满足以下准备条件。

  • 拥有亚马逊云科技账户。

  • 具有在Amazon SageMaker Unified Studio中访问Amazon Bedrock的权限。

  • 在支持的亚马逊云科技区域中,具有访问Amazon Bedrock上的Amazon Nova Pro模型的权限。

  • JIRA应用程序、JIRA URL以及您账户的JIRA API token。

本文假定您已经熟悉亚马逊云科技上的基础Serverless构建模块,如Amazon API Gateway、Lambda函数和Amazon IAM Identity Center,因此下文将不会重点阐述这些服务的定义,但会使用它们来展示Amazon SageMaker Unified Studio中新增的Amazon Bedrock功能的用例。

部署解决方案

要部署该解决方案,需要完成以下步骤:

1.从GitHub下载代码。

2.获取Lambda函数所需的JIRA_API_KEY_ARN、JIRA_URL和JIRA_USER_NAME的值。

3.使用以下Amazon CloudFormation模板,并参阅《从Amazon CloudFormation控制台创建堆栈》,在您首选的亚马逊云科技区域中启动堆栈。

4.堆栈部署完成后,记下Amazon CloudFormation输出选项卡中的Amazon API Gateway的URL值(ApiInvokeURL)。

5.在Amazon Secrets Manager控制台中,找到JIRA_API_KEY_ARN、JIRA_URL和JIRA_USER_NAME对应的密钥。

6.选择“检索密钥”,并将步骤2中的变量复制到密钥明文字符串中。

7.使用组织的SSO方式登录到Amazon SageMaker Unified Studio。

GitHub:

https://github.com/aws-samples/genai-crm-agent-demo

Amazon CloudFormation模板:

https://aws.amazon.com/cloudformation/

《从Amazon CloudFormation控制台创建堆栈》

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-create-stack.html

创建新项目

完成以下步骤以创建新项目。

1.在Amazon SageMaker Unified Studio登陆页面,创建一个新项目。

2.命名该项目,例如crm-agent。

3.选择“生成式AI应用开发配置文件”并继续。

4.使用默认设置并继续。

5.检查并选择“创建项目”以确认。

构建对话Agents应用程序

完成以下步骤构建对话Agents应用程序:

1.在crm-agent项目登录页面的右侧“新建”部分,选择“对话Agents”。

它包含了一系列Agents应用程序的配置。

2.在模型部分选择Amazon Bedrock支持的所需FM,对于此crm-agent,本例选择Amazon Nova Pro。

3.在系统提示部分,添加以下提示。您还可以选择添加用户输入和模型响应示例,以完善提示。

You are a customer relationship management agent tasked with helping a sales person plan their work with customers. You are provided with an API endpoint. This endpoint can provide information like company overview, company interaction history (meeting times and notes), company meeting preferences (meeting type, day of week, and time of day). You can also query Jira tasks and update their timeline. After receiving a response, clean it up into a readable format. If the output is a numbered list, format it as such with newline characters and numbers.

4.在“函数”部分,选择“创建新函数”。

5.命名该函数,例如crm_agent_calling。

6.关于“函数架构”,请使用GitHub代码库中的OpenAPI定义。

GitHub代码库:

https://github.com/aws-samples/genai-crm-agent-demo/blob/main/openapi_schema/openapi_schema.json

7.对于身份验证方式,选择“API密钥”(最多2个密钥)并输入以下详细信息:

  • 在“密钥发送位置”中,选择“Header”。

  • 在“密钥名称”中,输入x-api-key。

  • 在“密钥值”中,输入从Amazon Secrets Manager获取的API密钥。

8.在“API服务器”部分,输入端点URL。

9.选择“创建”以完成函数创建。

10.在对话Agents应用程序的“函数”部分,选择您创建的函数,然后选择“保存”以完成应用程序创建。

交互示例

本章节将继续介绍两个交互示例。

用例1

CRM分析师可使用自然语言检索存储在数据库中的客户详细信息

在该用例中,向对话应用程序中提出以下问题:

  • 请简要介绍客户C-jkl101112。

  • 列出客户C-def456最近的两次互动记录。

  • 客户C-mno131415更倾向于使用哪种沟通方式。

  • 根据C-ghi789的偏好和最近一次互动,推荐最佳联系时间和渠道。

对话应用程序所生成的响应如下图所示。Agents成功从数据库中检索到客户信息,并在准确理解用户问题的基础上,查询数据库以找到相应答案。

用例2

项目经理可以列出和更新JIRA工单

在该用例中,向对话应用程序中提出以下问题:

  • 项目ID为CRM的开放JIRA任务有哪些?

  • 请将JIRA任务CRM-3的截止时间更新为1周后。

对话应用程序的响应如下图所示。与上一用例类似,Agents访问了JIRA仪表盘,并获取了JIRA项目信息。它提供了开放JIRA任务列表,并根据用户请求更新了任务的截止时间。

清理

为避免产生额外费用,请执行以下步骤:

  • 删除Amazon CloudFormation堆栈。

  • 删除Amazon Bedrock中的函数组件。

  • 删除Amazon Bedrock中的对话Agents应用程序。

  • 删除Amazon SageMaker Unified Studio中的域。

删除Amazon CloudFormation堆栈:

https://docs.aws.amazon.com/AWSCloudFormation/latest/UserGuide/cfn-console-delete-stack.html

删除域:

https://docs.aws.amazon.com/sagemaker-unified-studio/latest/adminguide/delete-domain.html

费用

在Amazon SageMaker Unified Studio中使用Amazon Bedrock,本身不会产生单独费用,但您需要为在该服务中使用的亚马逊云科技服务和资源付费。同时,您只需对使用的Amazon Bedrock资源付费,无需支付最低费用或预付款。

如果您在定价计算方面需要更多帮助,或者对优化特定用例的成本有任何疑问,请联系亚马逊云科技支持团队或咨询您的客户经理。

总结

本文演示了如何在Amazon SageMaker Unified Studio中使用Amazon Bedrock,构建生成式AI应用程序,以便与现有终端和数据库集成。

Amazon Bedrock的生成式AI功能通过快速完成Agents的原型开发和部署,变革了企业构建和部署AI解决方案的方式。团队可以迅速创建、测试和启动对话Agents应用程序,从而加快实施自动化复杂任务和增强决策能力的AI解决方案。该解决方案的可扩展性和灵活性,使企业能够轻松将先进AI功能无缝集成至现有应用程序、数据库和第三方系统中。

通过统一的对话界面,Agents可以处理项目管理、数据检索和工作流自动化,从而大幅减少人工操作,提升用户体验。在Amazon SageMaker Unified Studio中使用Amazon Bedrock,可让先进的AI功能更易于用户访问和使用,从而使企业能够在当今竞争激烈的市场环境中,实现更高水平的生产力和客户满意度。

立即体验在Amazon SageMaker Unified Studio中试用Amazon Bedrock,满足您的用例需求。

本篇作者

Jady Liu

亚马逊云科技生成式AI Labs团队高级人工智能与机器学习解决方案架构师,常驻加利福尼亚州洛杉矶。她在技术行业拥有十多年工作经验,曾接触过多种技术,担任过多个职位。她热衷于生成式AI,与各行业各大客户合作,通过在亚马逊云科技上开发可扩展、有弹性且成本效益高的生成式AI解决方案,帮助客户实现业务目标。

Justin Ossai

亚马逊云科技生成式AI Labs专业解决方案架构师,常驻德克萨斯州达拉斯。他是一位充满热情的IT专业人士,拥有超过15年的技术经验。他曾为小型企业和大型企业设计并实施基于本地部署和云基础设施的解决方案。

星标不迷路,开发更极速!

关注后记得星标「亚马逊云开发者」

听说,点完下面4个按钮

就不会碰到bug了!

点击阅读原文查看博客!获得更详细内容!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值