一、业务场景与需求分析
1. 供应商主数据清洗业务背景
在企业供应链管理中,供应商主数据作为核心业务数据,其质量直接影响采购效率、成本控制和风险评估。典型的供应商主数据包含:
- 基础信息:供应商名称、统一社会信用代码、注册地址
- 联系信息:联系人、电话、邮箱、银行账户
- 资质信息:营业执照、税务登记证、行业认证
- 业务信息:供货范围、服务条款、历史交易记录
由于数据来源多样(ERP 系统、Excel 台账、第三方采购平台),常存在以下问题:
- 格式不统一:如 "深圳市科技有限公司" 与 "深圳科技有限公司"
- 关键信息缺失:20% 的供应商数据缺少银行账户信息
- 重复记录:某汽车制造企业存在 15% 的供应商重复建档
- 合规性风险:5% 的供应商营业执照已过有效期
2. 核心业务需求
- 自动化处理:实现从数据抽取到清洗入库的全流程自动化,减少 80% 以上人工干预
- 规则可配置:支持业务人员通过可视化界面自定义清洗规则
- 质量可视化:实时监控数据清洗进度和质量指标(准确率、完整率、合规率)
- 审计可追溯:记录每个数据处理节点的操作日志和变更历史
二、技术架构设计
1. 整体架构图
2. 核心组件协同
组件 | 功能定位 | 技术实现 | 业务价值 |
智能体 | 自然语言交互入口 | 解析清洗规则配置、查询清洗进度 | 降低技术门槛,支持业务人员自然语言操作 |
工作流 | 流程自动化引擎 | 编排数据抽取、清洗、校验、入库全流程 | 实现复杂业务逻辑的可视化编排 |
应用 | 业务闭环系统 | 提供数据看板、规则配置、任务管理界面 | 打造一站式数据清洗管理平台 |
三、智能体设计:人机交互核心
1. 智能体功能定义
- 意图识别:支持 "配置清洗规则"" 查看任务进度 ""导出质量报告" 等 12 种核心意图
- 知识库增强:存储 200 + 数据清洗业务术语(如 "统一社会信用代码校验规则")
- 插件集成:调用 MySQL 查询插件、文件解析插件、邮件通知插件
2. 对话流程示例:清洗规则配置
用户:我需要配置供应商名称的清洗规则
智能体:请问具体的清洗需求是什么?(支持格式统一、去重、关键词替换等)
用户:需要统一简称和全称,比如将"华为"统一为"华为技术有限公司"
智能体:已识别需求:字段=供应商名称,规则=全称标准化,映射表=[{"简称":"华为","全称":"华为技术有限公司"}]
是否确认生成该清洗规则?
用户:确认
智能体:已创建编号为CLEAN-20250412-001的清洗规则,可在应用后台查看详情
3. 技术实现要点
- 提示词工程:采用 "角色 + 任务 + 示例" 的 prompt 模板
prompt = f"""
你是企业数据清洗助手,负责解析用户的清洗规则配置需求。
请按照以下格式输出JSON:
{{
"field":"{字段名称}",
"rule_type":"{规则类型}",
"parameters":"{具体参数}"
}}
示例:用户说'需要清洗统一社会信用代码,去除特殊字符',应输出{{"field":"统一社会信用代码","rule_type":"格式清洗","parameters":"去除特殊字符"}}
"""
- 知识库构建:使用 Coze 的知识库管理功能,存储常用数据清洗正则表达式(如邮箱格式校验:^[a-zA-Z0-9_-]+@[a-zA-Z0-9_-]+(.[a-zA-Z0-9_-]+)+$)
四、工作流设计:数据清洗引擎
1. 核心流程节点编排
(1)数据接入阶段
- 数据源适配节点:支持 Excel/CSV 文件上传(调用 Coze 文件解析插件)、API 数据拉取(配置 HTTP 请求节点)
- 数据预处理节点:
-
- 格式转换:将非结构化数据转为 JSON 格式
-
- 类型校验:检查数值型字段(如电话号码)的数据类型
(2)清洗核心阶段
节点类型 | 实现方式 | 业务规则示例 |
格式统一节点 | 大模型 + 正则表达式 | 统一地址格式:将 "北京市朝阳区" 转为 "北京市 - 朝阳区 - XX 街道" |
缺失值处理节点 | 规则引擎 + 人工干预 | 对缺失的银行账户信息,先尝试从营业执照 OCR 识别,失败则触发人工补录 |
重复检测节点 | 模糊匹配算法(编辑距离 + 余弦相似度) | 供应商名称相似度 > 80% 且统一社会信用代码相同则判定为重复 |
合规校验节点 | 对接第三方 API(如企查查企业信息验证) | 校验营业执照有效期,超过 3 年未更新则标记风险 |
(3)质量评估阶段
- 指标计算节点:
-
- 准确率 =(清洗后正确数据量 / 总数据量)×100%
-
- 完整率 =(无缺失字段数据量 / 总数据量)×100%
-
- 合规率 =(通过合规校验数据量 / 总数据量)×100%
- 报告生成节点:调用 Python 脚本生成 PDF 格式的质量分析报告
(4)异常处理机制
- 条件分支节点:当数据清洗准确率 < 80% 时,自动触发二次清洗流程
- 人工审核节点:对标记为 "高风险" 的数据(如营业执照过期),通过企业微信通知数据管理员审核
2. 关键节点技术实现
(1)统一社会信用代码校验(Python 节点)
import re
def validate_usc(usc):
pattern = r'^[0-9A-HJ-NP-TV-Z]{18}$'
if re.match(pattern, usc):
return True
else:
return False
# 工作流参数传入usc字段
valid = validate_usc(workflow_input['usc'])
if not valid:
raise ValueError("统一社会信用代码格式错误")
(2)供应商名称去重(大模型节点)
- 提示词设计:"请判断以下两个供应商名称是否属于同一主体:名称 1={name1},名称 2={name2},请返回布尔值"
- 输出处理:将大模型返回的 "是" 转换为 True,"否" 转换为 False
3. 流程优化策略
- 并行处理:对相互独立的清洗任务(如地址清洗和联系方式清洗)设置并行节点,提升处理效率 30%
- 断点续传:记录每个任务的处理进度,异常中断后可从断点继续执行
- 重试机制:对 API 调用失败的节点设置 3 次重试,间隔时间为 5 秒
五、应用设计:业务操作平台
1. 功能模块架构
2. 核心界面设计
(1)数据看板
- 实时进度图:展示当前处理数据量、已完成清洗量、待审核数据量
- 质量仪表盘:动态显示准确率、完整率、合规率三大核心指标
- 风险预警:用红色高亮显示清洗失败率 > 15% 的任务
(2)清洗配置界面
- 字段映射表:支持可视化拖拽配置数据源字段与目标数据库字段的映射关系(如 Excel 的 "供应商简称" 映射到 MySQL 的 "supplier_short_name")
- 规则编辑器:提供可视化规则配置面板,支持:
-
- 基础规则:格式清洗、去重、缺失值填充
-
- 高级规则:基于大模型的语义清洗(如从公司简介中提取主营业务)
-
- 第三方规则:对接企业内部风控系统的合规规则
(3)任务管理界面
- 任务详情页:显示任务基本信息、处理日志、质量报告
- 批量操作:支持批量启动 / 暂停清洗任务,批量导出清洗后的数据
- 审计追踪:记录每个数据字段的清洗历史,包括操作时间、处理节点、变更前后值
3. 系统集成方案
- MySQL 对接:
-
- 使用 Coze 的数据库插件配置 JDBC 连接
-
- 支持动态生成 SQL 语句(如根据清洗规则生成数据更新语句)
- 企业微信集成:
-
- 任务异常时发送通知到指定工作群
-
- 人工审核节点通过企业微信小程序处理
六、关键技术点解析
1. 数据映射与转换技术
- 智能映射:通过智能体解析用户的字段映射需求,自动生成映射关系表
# 智能体返回的映射关系示例
mapping = {
"source_field": "供应商全称",
"target_field": "supplier_full_name",
"conversion_rule": "去除前后空格,统一为简体中文"
}
- 类型转换引擎:支持字符串转日期(如 "2025/04/12" 转为 DATE 类型)、数值类型校验等
2. 复杂逻辑处理技术
- 混合编排:在工作流中混合使用大模型节点、Python 代码节点、插件节点
- 规则引擎:使用 Drools 规则引擎实现复杂业务规则的管理(如多级审批规则)
3. 异常处理与容错技术
- 错误分类:将异常分为数据错误(如格式错误)、系统错误(如数据库连接失败)、业务错误(如合规校验不通过)
- 处理策略:
-
- 数据错误:记录错误日志,跳过当前数据项
-
- 系统错误:触发重试机制,同时通知管理员
-
- 业务错误:进入人工审核流程
七、实施步骤与案例分析
1. 实施路线图
阶段 | 时间 | 关键任务 | 交付物 |
需求分析 | 1-2 周 | 业务调研、清洗规则梳理、数据样本分析 | 需求规格说明书、数据字典 |
架构设计 | 2-3 周 | 智能体对话流程设计、工作流节点编排、应用界面原型 | 技术架构图、UI 原型图 |
开发测试 | 4-6 周 | 智能体开发、工作流编码、应用功能开发、联调测试 | 可运行的 Beta 版本、测试报告 |
部署运维 | 1-2 周 | 生产环境部署、用户培训、持续优化 | 操作手册、运维监控体系 |
2. 典型案例:某制造业企业供应商数据清洗
(1)项目背景
- 数据现状:3000 + 供应商数据,存在 25% 的格式不统一、18% 的信息缺失、12% 的重复记录
- 业务目标:建立标准化供应商主数据中心,支撑后续的供应商评级和采购策略优化
(2)方案实施
- 智能体应用:业务人员通过自然语言配置清洗规则,如 "将所有电话号码统一为 11 位数字格式"
- 工作流设计:
-
- 数据抽取:定时从 ERP 系统和 Excel 台账拉取数据
-
- 清洗流程:地址标准化→联系方式校验→重复数据合并→营业执照有效期校验
-
- 质量评估:每周生成数据质量报告,发送给供应链总监
- 应用效果:
-
- 清洗效率:单批次数据处理时间从 8 小时缩短至 1.5 小时
-
- 数据质量:准确率从 65% 提升至 92%,完整率从 70% 提升至 95%
-
- 人工成本:数据清洗岗位从 5 人缩减至 2 人,年成本节约 60 万元
(3)实施前后对比
指标 | 实施前 | 实施后 | 提升幅度 |
数据处理时效 | 8 小时 / 批 | 1.5 小时 / 批 | 81.25% |
人工干预率 | 75% | 20% | 73.33% |
合规率 | 68% | 96% | 41.18% |
八、总结与展望
1. 方案价值
- 效率提升:通过工作流自动化,减少重复性劳动,处理效率提升 5 倍以上
- 质量可控:可视化质量监控体系,使数据准确率、完整率、合规率可量化管理
- 成本节约:降低人工成本 70% 以上,减少因数据错误导致的采购风险损失
2. 技术创新点
- 混合架构:实现大模型智能处理与规则引擎的有机结合
- 低代码化:通过可视化界面完成 90% 以上的清洗规则配置和流程编排
- 智能交互:支持自然语言驱动的数据清洗配置,降低技术使用门槛
3. 未来扩展方向
- AI 能力增强:引入深度学习模型实现更精准的重复数据检测
- 多模态支持:增加对图片(如营业执照扫描件)、PDF 等非结构化数据的清洗能力
- 云端协同:支持与阿里云、腾讯云等云平台的数据仓库无缝对接
通过 Coze 平台的智能体、工作流、应用三大组件的协同,构建了一套完整的供应商主数据清洗解决方案,实现了从数据接入到清洗入库的全流程智能化、可视化、可配置化。该方案不仅适用于制造业,还可快速复制到零售、金融、医疗等行业,为企业数据治理提供高效的技术支撑。