1. 引言
在工业控制领域,传统的 PID 控制器因其结构简单、稳定性好而被广泛应用,但面对复杂非线性系统时往往力不从心。模型预测控制(MPC)作为一种基于模型的先进控制策略,能够有效处理多变量、多约束问题,但其对模型精度的依赖限制了应用范围。近年来,结合智能算法的混合控制架构成为研究热点。本文将深入对比神经网络 + MPC与模糊 PID + MPC两种混合架构,通过行业案例和代码实现揭示其技术特性与应用场景。
2. 技术原理与核心对比
2.1 神经网络 + MPC
核心思想:
- 神经网络(NN)用于逼近系统的非线性动态特性,替代传统 MPC 中的线性模型。
- 通过离线训练或在线学习更新网络参数,提升模型预测精度。
- 结合 MPC 的滚动优化机制,实现对复杂系统的实时控制。
技术优势:
- 非线性建模能力:可处理强非线性、时变系统(如化工反应釜、机器人动力学)。
- 数据驱动适应性:通过历史数据学习系统行为,减少对先验模型的依赖。
- 多变量协同优化:支持多输入多输出(MIMO)系统的全局优化。
局限性:
- 计算资源需求高:神经网络推理和 MPC 优化需高性能硬件支持。
- 训练数据要求严格:需覆盖系统全工况数据,否则易出现过拟合或外推误差。
2.2 模糊 PID + MPC
核心思想:
- 模糊 PID 控制器动态调整 PID 参数(Kp, Ki, Kd),增强系统鲁棒性。
- MPC 作为外环优化控制序列,处理多变量约束和全局目标。
- 模糊规则库基于专家经验或离线优化,实现参数自适应。
技术优势:
- 快速响应与稳定性:模糊 PID 在局部调节中表现优异,适用于快速扰动抑制。
- 工程实现简单:无需复杂数学模型,参数调整直观。
- 鲁棒性强:对模型误差和外部干扰具有较强容忍度。
局限性:
- 规则库设计依赖经验:复杂系统需大量试错,难以实现全局最优。
- 多变量耦合处理能力弱:对强耦合系统(如多温区反应釜)优化效果有限。
2.3 核心对比表
指标 |
神经网络 + MPC |
模糊 PID + MPC |
非线性处理 |
强(任意非线性逼近) |
中(依赖模糊规则库) |
实时性 |