数据结构--最大子序列和(使用分治策略和递归)

本文介绍了如何运用分治策略和递归方法来找到输入序列中的最大子序列和。例如,对于序列-2, 11, -4, 13, -5, -2,最大子序列和为20。当所有整数为负数时,最大子序列和为0。算法思路是将序列分为左、中、右三部分,分别计算各部分的最大子序列和,再比较得出全局最大值。" 120176684,8695218,C++ 类的行为:值类与指针类的实现,"['C++', '类', '引用计数']
摘要由CSDN通过智能技术生成

例如对于输入:-2,11,-4,13,-5,-2答案为20   为方便起见 若所有整数为负数 则最大子序列和为0

算法一:

分治策略:其想法是把问题分成大致相等的子问题,然后递归的对他们求解,这是“分”的部分,“治”是将两个子问题的解修不到一起并作少量附加工作,最后得到整个问题的解。

对于这个问题,可以分为三个部分,一个是最大子序列可能出现在输入数据的左半部分,第二种是出现在数据的右半部分,还有一种是在中间。第三部分可以通过求出前半部分的最大和(包括前半部分最后一个元素)和后半部分的最大和(包括后半部分的第一个元素),把这两个和相加就是中间部分的最大和,三个最大再比较下即可。

package com.itany.zuidazixulie;

public class Test
{
   public static void main(String[] args)
   {
       int[] nums={2,-1,4,7,-6,5,8,-2};
       System.out.println("最大子序列和是:"+ maxSumRec(nums,0,nums.length-1));
   }
   // 2 -1 4 7 | -6 9 8 -2 只对个数为2的N次方个数使用
   public static int maxSumRec(int[] nums,int left,int right)
   {
       //基准情况 即只有一个数的情况
       if(left==right)
       {
           if(nums[left]>0)
               return nums[le
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值