最大子序列求和_最大子序列的求解-分治方法

通过分治和递归思想解决整数序列的最大子序列求和问题。算法详细解析包括递归函数的执行逻辑,以及时间复杂度分析。程序展示了如何找到序列中连续子序列的最大和。
摘要由CSDN通过智能技术生成

问题描述

问题:给定整数序列,求解其中最大子序列(连续的序列)。

思路分析

利用“分治”和递归的思想求解,在《数据结构与算法分析(Java语言描述)》Page29,作者给出了具体的java代码。

总体思路是,原序列的子序列存在于三处,左、右和跨中点。将序列从中点分割,分别用递归求出

左边最大子序列

右边最大子序列

跨中点的最大子序列

其中,步骤3分别求出包含左侧和右侧包含中点端点的最大子序列,求和即是结果。

这样最后三者中的最大者即为序列的最大子序列。

源程序

//添加了求三数最大值的函数

public class MaxSubsequence {

public static int maxSubSum3(int[] a) {

return maxSumRec(a,0,a.length-1);

}

private static int maxSumRec(int[] a,int left,int right) {

if(left==right) {

if(a[left]>0)

return a[left];

else

return 0;

}

int center =(left+right)/2;

int maxLeftSum=maxSumRec(a, left, center); //递归1

int maxRightSum=maxSumRec(a, center+1, right); //递归2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值