spark mllib是基于spark core的机器学习库。
我们首先用mllib跑一个简单的KMeans的例子(来自官方网站)。
KMeans是一个无监督学习问题,我们基于一些相似性将点集聚类在一起。KMeans常用于探索性分析,或者作为分级监督学习管道的一个组件。KMeans实现的是这篇论文的变种:http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf,mllib中的参数有:
k:聚成多少类
maxIterations:最大的迭代次数
initializationMode:随机初始化或者KMeans||初始化
runs:跑多次KMeans算法,然后选出最好的
initializationSteps:决定KMeans||算法的步骤数
epsilon:收敛的distance
下面是用spark-shell可以执行的一段代码:
import org.apache.spark.mllib.clustering.KMeans
import org.apache.spark.mllib.linalg.Vectors
// Load and parse the data
val data = sc.textFile("data/kmeans_data.txt")
val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble)))
// Cluster the data into two classes using KMeans
val numClusters = 2
val numIterations = 20
val clusters = KMeans.train(parsedData, numClusters, numIterations)
// Evaluate clustering by computing Within Set Sum of Squared Errors
val WSSSE = clusters.computeCost(parsedData)
println("Within Set Sum of Squared Errors = " + WSSSE)