spark mllib初探练习

9 篇文章 0 订阅
spark mllib是基于spark core的机器学习库。
     我们首先用mllib跑一个简单的KMeans的例子(来自官方网站)。
     KMeans是一个无监督学习问题,我们基于一些相似性将点集聚类在一起。KMeans常用于探索性分析,或者作为分级监督学习管道的一个组件。KMeans实现的是这篇论文的变种:http://theory.stanford.edu/~sergei/papers/vldb12-kmpar.pdf,mllib中的参数有:
     
     k:聚成多少类
     maxIterations:最大的迭代次数
     initializationMode:随机初始化或者KMeans||初始化
     runs:跑多次KMeans算法,然后选出最好的
     initializationSteps:决定KMeans||算法的步骤数
     epsilon:收敛的distance

     下面是用spark-shell可以执行的一段代码:
        import org.apache.spark.mllib.clustering.KMeans
     import org.apache.spark.mllib.linalg.Vectors
     // Load and parse the data
     val data = sc.textFile("data/kmeans_data.txt")
     val parsedData = data.map(s => Vectors.dense(s.split(' ').map(_.toDouble)))
     // Cluster the data into two classes using KMeans
     val numClusters = 2
     val numIterations = 20
     val clusters = KMeans.train(parsedData, numClusters, numIterations)
     // Evaluate clustering by computing Within Set Sum of Squared Errors
     val WSSSE = clusters.computeCost(parsedData)
     println("Within Set Sum of Squared Errors = " + WSSSE)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值