windows下pycharm搭建spark环境,练习SparkMllib(附代码并成功运行)

本文通过在Windows环境下使用PyCharm搭建Spark环境,介绍了如何利用Spark MLlib库实现电影推荐系统的全过程。从读取用户、评分及电影信息等数据开始,经过数据预处理,到使用ALS算法训练推荐模型,并最终展示推荐结果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

总体的架构与sparkSQL类似,架构可参考
windows下pycharm搭建spark环境,练习SparkSQL(附代码并成功运行)

本文章与sparkSQL类似的架构读取三个文件数据,并导入包pyspark.mllib.recommendation import ALS
创建并训练出模型,显示推荐的电影名称
然后保存模型,并且再次调用

# 主  题:Spark Mlib
import os
import sys
import findspark  # 一定要在最前面导入

# 初始化spark环境
findspark.init()
# Path for spark source folder
os.environ['SPARK_HOME'] = "G:\Spark\Install\spark-2.4.3-bin-hadoop2.7"
# Append pyspark to Python Path
sys.path.append("G:\Spark\Install\spark-2.4.3-bin-hadoop2.7\python")

from pyspark.sql import SparkSession
from pyspark import Row

# 读取用户数据
spark = SparkSession.builder.getOrCreate()
sc = spark.sparkContext
user_df = spark.read.text('G:\\Spark\\SparkMLLib\\data\\u.user')
# print(user_df.show(10))

# 为用户数据添加 schema
user_rdd = user_df.rdd.map(lambda x: x[0].split('|')).map(
    lambda x: Row(id=x[0], age=x[1], sex=x[2]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值