总体的架构与sparkSQL类似,架构可参考
windows下pycharm搭建spark环境,练习SparkSQL(附代码并成功运行)
本文章与sparkSQL类似的架构读取三个文件数据,并导入包pyspark.mllib.recommendation import ALS
创建并训练出模型,显示推荐的电影名称
然后保存模型,并且再次调用
# 主 题:Spark Mlib
import os
import sys
import findspark # 一定要在最前面导入
# 初始化spark环境
findspark.init()
# Path for spark source folder
os.environ['SPARK_HOME'] = "G:\Spark\Install\spark-2.4.3-bin-hadoop2.7"
# Append pyspark to Python Path
sys.path.append("G:\Spark\Install\spark-2.4.3-bin-hadoop2.7\python")
from pyspark.sql import SparkSession
from pyspark import Row
# 读取用户数据
spark = SparkSession.builder.getOrCreate()
sc = spark.sparkContext
user_df = spark.read.text('G:\\Spark\\SparkMLLib\\data\\u.user')
# print(user_df.show(10))
# 为用户数据添加 schema
user_rdd = user_df.rdd.map(lambda x: x[0].split('|')).map(
lambda x: Row(id=x[0], age=x[1], sex=x[2]