机器学习之正则化

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
出现了过拟合,那么怎么样来解决呢?
在这里插入图片描述
上面的回归问题可以看出,出现的过拟合往往是由那些高次项导致的,可以考虑减少这些高次项的系数。所以,要做的就是一定程度上减少这些参数theta的值。这就是正则化的基本方法。
在这里插入图片描述
经过正则化处理后,如下:
在这里插入图片描述
这里选择过大的lamda,得到的可能是一条平行于x轴的直线。导致欠拟合。
例子:正则化线性回归
在这里插入图片描述
在这里插入图片描述
正则化一般不对theta0进行惩罚
在这里插入图片描述
出现过拟合和欠拟合的状况下代表了什么。以及找到最好的模型参数。即相交的那个点,均方误差最低。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值