出现了过拟合,那么怎么样来解决呢?
上面的回归问题可以看出,出现的过拟合往往是由那些高次项导致的,可以考虑减少这些高次项的系数。所以,要做的就是一定程度上减少这些参数theta的值。这就是正则化的基本方法。
经过正则化处理后,如下:
这里选择过大的lamda,得到的可能是一条平行于x轴的直线。导致欠拟合。
例子:正则化线性回归
正则化一般不对theta0进行惩罚
出现过拟合和欠拟合的状况下代表了什么。以及找到最好的模型参数。即相交的那个点,均方误差最低。
机器学习之正则化
最新推荐文章于 2021-06-19 09:18:19 发布