【机器学习】【决策树】有了决策树的字典结构后 ,如何用python绘制决策树?

本文介绍了在拥有决策树的字典结构后,如何使用Python进行可视化。通过示例代码展示了两种不同字典结构的决策树的绘制结果。
摘要由CSDN通过智能技术生成

1.需求说明

求出决策树的字典存储形式数据后,绘制出决策树的图形,则会更形象认识和了解其决策树。

比如,有决策树的字典结构如下所示:

tree_dict = {'house?': {'hourse_no': {'working?': {'work_no': 'refuse', 'work_yes': 'agree'}}, 'hourse_yes': 'agree'}}

要绘制出对应的如下决策树:


本章代码就是完成此需求的。

2. 代码

# -*- coding: utf-8 -*-
"""
@author: 蔚蓝的天空Tom
Aim:得到决策树的字典后,需要使用python来绘制对应的决策树figure
输入决策树的字典,样例如下所示:
dtree = {'house?': {'hourse_no': {'working?': {'work_no': 'refuse', 'work_yes': 'agree'}}, 'hourse_yes': 'agree'}}
"""

import matplotlib.pyplot as plt

#定义判断结点形状,其中boxstyle表示文本框类型,fc指的是注释框颜色的深度
decisionNode = dict(boxstyle="round4", color='r', fc='0.9')
#定义叶结点形状
leafNode = dict(boxstyle="circle", color='m')
#定义父节点指向子节点或叶子的箭头形状
arrow_args = dict(arrowstyle="<-", color='g')

def plot_node(node_txt, center_point, parent_point, node_style):
    '''
    绘制父子节点,节点间的箭头,并填充箭头中间上的文本
    :param node_tx
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值