跟我一起学机器学习 Machine Learning
文章平均质量分 65
本专栏对涉及到的机器学习算法从概念、原理、公式、应用、python实践等各个方向进行详细讲解和实践。达到即使没有接触过机器学习的人也能从零学起,,并能掌握和应用。
注:最起码2018年内都会一直更新将机器学习主要内容呈现出来,2019更新以精华总结为主
CV_ML_DP
赏cv,ml,dp之美,创其价值
展开
-
【机器学习】【层次聚类算法-1】HCA(Hierarchical Clustering Alg)的原理讲解 + 示例展示数学求解过程
1.聚类系列算---层次聚类算法2.层次聚类算法的计算原理3.一个示例展示层次聚类算法的数学计算过程参考文献:[1]http://bluewhale.cc/2016-04-19/hierarchical-clustering.html[2]https://www.cnblogs.com/weimiaomiao/p/4318244.html[3]https://www.cnblogs.com/tia...转载 2018-05-31 22:33:41 · 13058 阅读 · 0 评论 -
【机器学习】【线性代数】正交基、标准正交基、正交矩阵,正交变换等数学知识点
1.标准正交基2.正交矩阵3.正交变换4.正交矩阵 举例5.正交变换 举例(end)原创 2018-05-28 09:30:08 · 33899 阅读 · 0 评论 -
【机器学习】【线性代数】均值,无偏估计,总体/样本方差,样本标准差,矩阵中心化/标准化、协方差,正/不/负相关等,协方差矩阵
1.总体方差2.样本方差3.协方差(end)原创 2018-05-28 09:59:03 · 6865 阅读 · 1 评论 -
【机器学习】【线性代数】协方差+协方差矩阵的多种求解方法的Python实现(公式法 + 样本集中心化方法 + np.cov()法等)
1.协方差和协方差矩阵的概念公式1.1协方差公式1.2协方差矩阵公式有数据集={X,Y,Z},是三维度的数据,即此此数据集中的样例有3个特征2.协方差的多种求解Python实现2.1代码2.2运行结果3.协方差矩阵的多种求解Python实现人肉出品,代码详见如下:3.1代码# -*- coding: utf-8 -*-"""@author: 蔚蓝的天空TomTalk is cheap, sh...原创 2018-05-28 19:57:17 · 11193 阅读 · 2 评论 -
【机器学习】【ICA-1】概率统计/代数知识详解:高斯分布、概率密度函数、累积分布函数、联合分布函数、复合函数的概率密度函数、行列式求导等
1.ICA概念2.ICA不处理服从高斯分布的样本集3.概率密度函数4.复合函数的概率密度函数5.累积分布函数/分布函数6.联合分布7.行列式8.代数余子式(end)原创 2018-05-29 19:32:01 · 9036 阅读 · 0 评论 -
【机器学习】【ICA-2】ICA独立成分分析的原理 + ICA前的预处理(中心化+漂白)
1.鸡尾酒宴会2.ICA概念和目的3.ICA计算过程的原理推理4.实例展示ICA的求解过程(end)原创 2018-05-29 19:35:41 · 14400 阅读 · 8 评论 -
【机器学习】【ICA-3】ICA独立成分分析的Python实现
1.ICA独立成分分析的详解2.ICA独立成分分析的Python实现2.1代码2.2运行结果(end)原创 2018-05-29 19:37:07 · 6673 阅读 · 10 评论 -
【机器学习】【SVD-3】SVD降维的应用简介 + 降维示例展示 + Python代码实现
1.SVD奇异值分解的基本原理介绍参见前面博客:SVD奇异值分解的基本原理介绍2.Python代码基于SVD的商品推荐系统的Python实现,代码如下所示:(end)原创 2018-05-24 18:05:46 · 11229 阅读 · 11 评论 -
【机器学习】【SVD-5】SVD在推荐(策略:TopK)系统中的应用简介 + 示例展示 + Python代码实现
SVD在推荐(策略:TopK)系统中的应用简介 + 示例展示 + Python代码实现原创 2018-05-25 17:30:44 · 1467 阅读 · 1 评论 -
【机器学习】【PCA-1】PCA基本原理和原理推导 + PCA计算步骤讲解 + PCA实例展示数学求解过程
1.PCA主成分分析原理2.PCA流程3.PCA实例讲解(end)原创 2018-05-26 00:01:07 · 30316 阅读 · 3 评论 -
【机器学习】【PCA-2】PCA主成分分析的降维的Python实现 + 代码讲解
1.PCA主成分分析原理2.PCA降维求解步骤3.PCA降维的Python实现(Release版本)3.1代码3.2运行结果4.PCA降维的Python实现(Debug版本)4.1代码4.2运行结果(end)原创 2018-05-26 00:03:34 · 3133 阅读 · 2 评论 -
【机器学习】【PageRank算法-1】PageRank算法原理介绍
20180512完成此博客原创 2018-05-12 12:31:44 · 11779 阅读 · 3 评论 -
【机器学习】【PageRank算法-3】数学点:马尔可夫链概念 +(右/左/双) 随机矩阵 + 不可约矩阵 + 素矩阵/[非]周期性矩阵
1.马尔可夫链概念 Markov Chain,马尔科夫链是满足马尔科夫性质的随机过程。2.ninig(end)原创 2018-05-17 11:33:08 · 5449 阅读 · 0 评论 -
【机器学习】【Apriori算法-1】Apriori算法原理详解 + 示例展示数学求解过程
1.Apriori算法原理详解Apriori算法是经典的挖掘频繁项集和关联规则的数据挖掘算法。A priori在拉丁语中指"来自以前"。当定义问题时,通常会使用先验知识或者假设,这被称作"一个先验"(a priori)。Apriori算法的名字正是基于这样的事实:算法使用频繁项集性质的先验性质,即频繁项集的所有非空子集也一定是频繁的。Apriori算法使用一种称为逐层搜索的迭代方法,其中k项集用于...原创 2018-05-17 22:47:58 · 2667 阅读 · 0 评论 -
【机器学习】【Apriori算法-2】Apriori算法的Python实现 + 代码讲解
1.Apriori算法原理详解 请详见:Apriori算法原理详解+示例展示数学求解过程2.Python实现本文基于该样例的数据编写Python代码实现Apriori算法。代码需要注意如下两点:由于Apriori算法假定项集中的项是按字典序排序的,而集合本身是无序的,所以我们在必要时需要进行set和list的转换;由于要使用字典(support_data)记录项集的支持度,需要用项集作为ke...原创 2018-05-17 22:50:44 · 1900 阅读 · 1 评论 -
【机器学习】【随机森林-1】Random Forest算法讲解 + 示例展示数学求解过程
1.随机森林概念RF,Random Forest,随机森林。2.随机森林的特点3.随机森林的基本知识4.示例展示RF的数学求解过程(end 20180523)原创 2018-05-23 22:34:22 · 3518 阅读 · 0 评论 -
【机器学习】【随机森林-2】Random Forest算法的Python实现
1.随机森林基本原理随机森林的基本原理,以及数学示例,可以看以前博客:【机器学习】【随机森林-1】Random Forest算法讲解 + 示例展示数学求解过程2.Python实现代码2.1重要的Python知识点2.2代码2.3运行结果(end 20180523)...原创 2018-05-23 22:38:30 · 1190 阅读 · 0 评论 -
【再回首Python之美】【numpy.linalg】计算矩阵/向量的三种范数:numpy.linalg.norm()
1.SVD奇异值分解概念2.SVD奇异值分解 数学示例展示参考文献:[机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用(end)原创 2018-05-24 13:56:32 · 8341 阅读 · 0 评论 -
【机器学习】【SVD-2】奇异值分解公式的Python实现
1.SVD奇异值分解的基本原理介绍参见前面博客:SVD奇异值分解的基本原理介绍2.Python代码# -*- coding: utf-8 -*-"""@author: 蔚蓝的天空TomTalk is cheap, show me the codeAim:svd奇异值分解公式求解的代码实现"""import numpy as npfrom numpy import linalg as...原创 2018-05-24 18:02:15 · 1070 阅读 · 0 评论 -
【机器学习】【SVD-4】SVD在推荐(策略:TopOne)系统中的应用简介 + 示例展示 + Python代码实现
1.SVD降维的应用简介2.降维示例展示3.Python代码实现参考文献:[1][机器学习笔记]奇异值分解SVD简介及其在推荐系统中的简单应用[2]【机器学习】推荐系统、SVD分解降维[3]SVD在推荐系统中的应用[4]SVD Recommendation System in Ruby[5]矩阵特征值分解与奇异值分解含义解析及应用[6]We Recommend a Singular Value D...原创 2018-05-25 13:46:54 · 782 阅读 · 0 评论 -
【机器学习】【提升方法-BoostingTree-3】提升树学习算法详解+示例讲解数学求解过程
20180510完成此博客。原创 2018-05-10 23:43:00 · 1451 阅读 · 0 评论 -
【机器学习】【提升方法-BoostingTree-4】回归问题的提升树的Python实现
20180511完成此博客。原创 2018-05-11 09:47:56 · 1465 阅读 · 0 评论 -
【机器学习】【条件随机场CRF-1】CRF的矩阵形式表示的示例讲解 + Python实现
20180512下午完成此博客原创 2018-05-11 22:59:34 · 6484 阅读 · 11 评论 -
【机器学习】【条件随机场CRF-2】CRF的预测算法之维特比算法(viterbi alg) 详解 + 示例讲解 + Python实现
20180512晚上完成此博客。原创 2018-05-11 23:02:01 · 6549 阅读 · 2 评论 -
【机器学习】【感知机-1】感知机算法概念和基本原理详解
20180513完成此博客原创 2018-05-11 23:15:42 · 6053 阅读 · 0 评论 -
【机器学习】【感知机-2】感知机(Perceptron)学习算法的原始形式的Python实现
20180513完成此博客。原创 2018-05-11 23:16:46 · 772 阅读 · 0 评论 -
【机器学习】【感知机-3】感知机(Perceptron)学习算法的对偶形式的Python实现
20180512完成此博客原创 2018-05-12 12:31:01 · 1050 阅读 · 1 评论 -
【机器学习】【PageRank算法-2】幂迭代算法等方法Python实现
PageRank算法详解 + 示例详解数学求解过程原创 2018-05-15 16:00:54 · 5450 阅读 · 1 评论 -
【机器学习】【条件随机场CRF-3】条件随机场的参数化形式详解 + 画出对应的状态路径图 + 给出对应的矩阵表示
条件随机场的参数化形式详解原创 2018-05-17 00:12:15 · 3183 阅读 · 2 评论 -
【机器学习】【PageRank算法-4】MapReduce算法简介 + Python实现
1.MapReduce简介2.Python实现参考文献[1]深入浅出PageRank算法[2]张洋:前戏PageRank算法[3]PageRank算法简介及Map-Reduce实现[4]MapReduce原理与设计细想[5]PageRank算法-从原理到实现(end)...原创 2018-05-17 19:59:13 · 671 阅读 · 0 评论 -
【机器学习】【隐马尔可夫模型-2】前向算法:算法详解+示例讲解+Python实现
0.前排提示csdn有些数学公式编辑不出来,所以本博用容易书写的表达式来表示专业数学公式,如: (1) 在本博客中用α<T>(i)来表示 (2)在本博客中用[i=1, N]∑来表示注:这是为了表示一些无法编辑出来的数学公式而本博自己想出来的表示方法,不是专业使用,在离开此博客时请忘记他们~~1.隐马尔可夫模型简介 隐马尔可夫模型的详细讲解,请详见:【机器学习】【隐马尔可夫模型...原创 2018-05-03 21:15:34 · 8768 阅读 · 5 评论 -
【机器学习】【提升方法-AdaBoost-1】提升法的基本思路+AdaBoost算法详解+AdaBoost示例讲解
20180505完成此博客。原创 2018-05-04 23:16:09 · 848 阅读 · 0 评论 -
【机器学习】【提升方法-AdaBoost-2】AdaBoost算法分类器的Python实现+代码讲解
20180505完成此博客。原创 2018-05-04 23:18:15 · 1922 阅读 · 0 评论 -
【机器学习】5种距离度量方法详解+Python实现([]+lambda+np.frompyfunc+向量法等多种方法实现)
20180508完成此博客。原创 2018-05-08 21:37:56 · 2697 阅读 · 0 评论 -
【机器学习】【隐马尔可夫模型-1】基本概念+观测序列的生成算法+示例讲解
从例子开始学隐马尔可夫模型,是一个较为简单的学习方法。1.啥也不说,先看个例子我面前有个桌子,桌子上有5个外观一模一样的盒子,按照一排摆放,每个盒子里面都装有10个形状大小一模一样的圆球,每个球只能是红色或者白色,下面是每个盒子装有球的信息.1.1盒子信息 轻松得到如下信息: 盒子集合={盒子1,盒子2,盒子3,盒子4,盒子5} 球颜色集合={白色,红色} 从每个盒子当中随...原创 2018-05-03 21:12:19 · 7992 阅读 · 1 评论 -
【机器学习】【隐马尔可夫模型-3】后向算法:算法详解+示例讲解+Python实现
0.前排提示csdn有些数学公式编辑不出来,所以本博用容易书写的表达式来表示专业数学公式,如: (1) 在本博客中用α<T>(i)来表示 (2)在本博客中用[i=1, N]∑来表示注:这是为了表示一些无法编辑出来的数学公式而本博自己想出来的表示方法,不是专业使用,在离开此博客时请忘记他们~~1.隐马尔可夫模型简介 隐马尔可夫模型的详细讲解,请详见:【机器学习】【隐马尔可夫模型...原创 2018-05-03 21:24:21 · 9087 阅读 · 8 评论 -
【机器学习】【隐马尔可夫模型-4】维特比算法:算法详解+示例讲解+Python实现
20180504完成此博客1.维特比算法简介 维特比算法实际是用动态规划解隐马尔可夫模型预测问题,就是用动态规划(dynamic programming)求概率最大路径(最优路径)。 这时一条路径对应着一个状态序列。2.维特比算法详解3.举个例子下面用一个例子来说明维特比算法的数学计算的详细过程,更形象来理解维特比算法。4.上面例子的Python实现代码(end)...原创 2018-05-04 21:05:29 · 5950 阅读 · 2 评论 -
【机器学习】【EM算法-1】数学基础:正/负定矩阵+凹(凸)函数+(最大)似然函数+Hessian矩阵+Jensen不等式。
20180427完成此博客原创 2018-04-27 10:21:47 · 4541 阅读 · 0 评论 -
【机器学习】【朴素贝叶斯-1】Naïve Bayes算法详解+样本集实例计算过程详解
1.朴素贝叶斯算法简介最前面的一句话:朴素贝叶斯算法基于贝叶斯公式和样本的每个特征之间是相互独立的。1.1数学中理解数学基础是贝叶斯公式:可以这么理解这个公式:如果知道A和B事件的单独发生概率,只要知道了以下任意一个事件的概率,就可以求出来另外一个事件的发生概率:1)发生事件A的前提下,发生事件B的概率,即P(B|A)2)发生事件B的前提下,发生事件A的概率,即P(A|B)1.2样本数据集中理解使...原创 2018-04-23 21:42:12 · 1657 阅读 · 0 评论 -
【机器学习】【朴素贝叶斯-2】Naïve Bayes算法的Python实现
1.朴素贝叶斯算法 算法讲解以及样本集实例计算过程,请阅读:https://blog.csdn.net/u012421852/article/details/80056947 下面直接给出朴素贝叶斯分类器的python代码实现。2.朴素贝叶斯分类器的python实现人肉完成,代码如下:# -*- coding: utf-8 -*-"""Author:蔚蓝的天空TomAim:实现朴...原创 2018-04-23 21:43:16 · 599 阅读 · 0 评论