图的最小生成树

基本概念

最小生成树(最小支撑树,MST-minimum-cost spanning tree)

图G为带权连通图,MST为一个包含G所有顶点及其(|V|-1) 条边(子集)的自由树:边权和最小;连通!

应用场景:

  1. 怎样使得在几个城市之间建立的电话网(高速公路)所需线路最短?
  2. 怎么使连接电路板上一系列接头所需焊接的线路最短?

求解算法

基于贪心策略!
http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html

1. Prim算法

点集角度出发。复杂度:邻居矩阵:O(|V|^2)

主要思想:从图中任意一个顶点N开始,初始化MST为N。选出与N相关联的边中权最小的一条边,设其连接顶点与另一顶点M。将顶点M和边(N,M)加入到MST中。接下来,选出与顶点N或顶点M相关联的边中权值最小的一条边,设其连接一个新顶点,将这条边和新顶点添加到MST中。反复进行这样的处理,直至MST包含所有顶点。

算法伪代码:
这里写图片描述

2. Kruskal算法

复杂度:O(|V|log|E|)

算法思想:首先将顶点集分为|V|个等价类,每个等价类包括一个顶点。然后按照权值的大小顺序处理每条边。如果一条边连接属于2个不同等价类的顶点,就把这条边添加到MST中,并把这2个等价类合并成一个(将两个树合并成一个树)。反复执行这个过程直至只剩下一个等价类。

这里写图片描述

### 关于有向最小生成树 对于无向最小生成树是一个经典的优化问题,可以通过 Kruskal 或 Prim 算法来解决。然而,在有向的情况下,定义和求解最小生成树会有所不同。 #### 定义 在有向中,“最小生成树”的概念通常被扩展为 **最小生成森林** 或者更具体地说是 **最小强连通分支树 (Arborescence)**。一个 Arborescence 是一种特殊的有向生成树,其中所有的边都指向根节点或者从根节点发[^3]。换句话说: - 如果存在一个指定的根节点 \( r \),那么该有向的一个最小生成树可以看作是从这个根节点发的一棵最小权值的树形结构。 这种情况下,我们称之为 **最小成本有向生成树 (Minimum Cost Directed Spanning Tree)** 或简称 **最小 Arborescence**。 #### Edmonds' Algorithm(Edmonds 算法) 针对有向中的最小生成树问题,最著名的算法是由 Jack Edmonds 提的一种贪心策略,称为 Edmonds’ algorithm。此算法能够有效地计算以某个特定顶点作为根节点的最小 Arborescence。以下是其核心思想: 1. 初始化:假设给定一个带权重的有向 \( G=(V,E) \),以及选定的根节点 \( r \in V \)[^4]。 2. 构建候选集合:对于每一个非根节点 \( v \neq r \),选取进入 \( v \) 的具有最小权重的一条弧加入到当前候选集中。 3. 处理循环:如果这些选的弧形成了若干个独立回路,则通过收缩技术把这些回路压缩成单个超级节点,并重复上述过程直到不再形成新的回路为止。 4. 展开操作:最后一步是对之前所做的所有收缩动作逆序展开恢复原始形并得到最终的结果。 这种方法的时间复杂度大约为 O(|E||V|),虽然不是最优效率级别,但在实际应用当中表现良好[^5]。 ```csharp // 下面给的是伪代码框架用于说明逻辑流程而非完整的C#实现版本 public class Edge { public int From { get; set; } public int To { get; set; } public double Weight { get; set; } } List<Edge> FindMinSpanningArborescence(List<List<Edge>> graph, int root){ List<int>[] inverseGraph = BuildInverseGraph(graph); bool[] visitedNodes = new bool[graph.Count]; Array.Fill(visitedNodes, false); PriorityQueue<(int node, double cost),double> pq=new(); foreach(var edge in graph[root]){ pq.Enqueue((edge.To, edge.Weight), edge.Weight); } while(pq.TryDequeue(out var item)){ if(!visitedNodes[item.node]){ // Process the current minimum weight incoming arc... visitedNodes[item.node]=true; foreach(var outgoingEdge from graph[item.node]){ if(!visitedNodes[outgoingEdge.To]) UpdatePriorityQueueWithNewCosts(pq,outgoingEdge); } } } } ``` 上面展示了一个简化版的思路转换为程序设计形式的例子,注意这并非严格意义上的Edmond's Algorithm完全体,仅提供理解上的帮助[^6]。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值