nips 2013笔记(1)-Deep content-based music recommendation

1、 Deep content-based music recommendation

   该文章是解决歌曲推荐中的的冷启动问题提出的,新歌或者是不流行的歌曲由于没有用户播放记录,采用传统的协同过滤或者矩阵分解等方法,不能取得好的效果,所以作者采用深度卷积神经网络提取歌曲音频中的特征作为歌曲的特征,然后采用WMF(weighted matrix factorization)模型进行评分预测。

下载地址:http://media.nips.cc/nipsbooks/nipspapers/paper_files/nips26/1239.pdf


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值