Largest Number At Least Twice of Others

Example 1:

Input: nums = [3, 6, 1, 0]
Output: 1
Explanation: 6 is the largest integer, and for every other number in the array x,
6 is more than twice as big as x. The index of value 6 is 1, so we return 1.

Example 2:

Input: nums = [1, 2, 3, 4]
Output: -1
Explanation: 4 isn’t at least as big as twice the value of 3, so we return -1.

这道题目的问题可以化简为从数组中找到第一大和第二大的元素,如果第二大元素的两倍小于等于第一大的元素,那么我们就返回第一大元素的下标索引,否则返回-1,值得注意的是,当我们数组中只有一个元素的时候,那么这时候的返回值应该是0。下面是代码:

int dominantIndex(vector<int>& nums) {
        if(nums.size()<2)
        {
            return 0;
        }
        int maxVal = INT_MIN;
        int secondVal = INT_MIN;
        int index = -1;
        for(int i=0;i<nums.size();i++)
        {
            if(nums[i]>maxVal)
            {
                secondVal = maxVal;
                maxVal = nums[i];
                index = i;
            }
            else if(nums[i]>secondVal&&nums[i]<maxVal)
            {
                secondVal = nums[i];
            }
        }
        return maxVal>=2*secondVal?index:-1;
    }
内容概要:本文详细探讨了基于樽海鞘算法(SSA)优化的极限学习机(ELM)在回归预测任务中的应用,并与传统的BP神经网络、广义回归神经网络(GRNN)以及未优化的ELM进行了性能对比。首先介绍了ELM的基本原理,即通过随机生成输入层与隐藏层之间的连接权重及阈值,仅需计算输出权重即可快速完成训练。接着阐述了SSA的工作机制,利用樽海鞘群体觅食行为优化ELM的输入权重和隐藏层阈值,从而提高模型性能。随后分别给出了BP、GRNN、ELM和SSA-ELM的具体实现代码,并通过波士顿房价数据集和其他工业数据集验证了各模型的表现。结果显示,SSA-ELM在预测精度方面显著优于其他三种方法,尽管其训练时间较长,但在实际应用中仍具有明显优势。 适合人群:对机器学习尤其是回归预测感兴趣的科研人员和技术开发者,特别是那些希望深入了解ELM及其优化方法的人。 使用场景及目标:适用于需要高效、高精度回归预测的应用场景,如金融建模、工业数据分析等。主要目标是提供一种更为有效的回归预测解决方案,尤其是在处理大规模数据集时能够保持较高的预测精度。 其他说明:文中提供了详细的代码示例和性能对比图表,帮助读者更好地理解和复现实验结果。同时提醒使用者注意SSA参数的选择对模型性能的影响,建议进行参数敏感性分析以获得最佳效果。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值