博弈论学习笔记4

“完全且完备信息”动态博弈


动态博弈的一个中心问题是“可信性”问题。“可信性”:动态博弈中,先行方是否应该相信后行方会采取对自己有利的(许诺)或不利的(威胁)行为。


定义1:子博弈,即能够自成一个博弈的、某个动态博弈的从其某个阶段开始的后续阶段。它必须有一个初始信息集,且具备进行博弈所需要的各种信息。

定义2:逆推归纳法,即从动态博弈的最后一个阶段或最后一个子博弈开始,逐步向前倒推以求解动态博弈的方法。例子:五海盗分宝石。

定义3:如果动态博弈中各博弈方的策略在动态博弈本身和所有子博弈中都构成一个纳什均衡,则称该策略组合为一个“子博弈完备纳什均衡”。


重复博弈:某些阶段会重复,每次重复时博弈方、可选策略、规则和得益都是相同的。

在不同的博弈规则和不同的收益函数下需要具体情况具体分析。主要难点在于公式的推导。而逆推归纳法是很重要的分析方法。


不完全信息静态博弈

局中人对于博弈中的赢得具有不确定性的博弈。这是由于信息不对等。如此一来一个博弈就变成了两个博弈。海萨尼为两个博弈添加了一个nature根节点,每个子节点有概率分布,海萨尼转换将多个博弈合并为一个。


不完全信息动态博弈

声明博弈、信号博弈



评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值