博弈论(Game Theory)入门学习笔记(持续更新)

博弈论(Game Theory)入门学习笔记(已全部更新)

课程介绍

  • 博弈论,又称对策论,是使用严谨的数学模型研究冲突对抗条件下最优决策问题的理论,是研究竞争的逻辑和规律的数学分支。

1-1 Taste-Backoff

  • 以一个经典案例引出博弈论
  • TCP Backoff Game
    两台电脑之间想要实现通信,两种方式可供选择,建立回退机制以及不建立回退机制。如果AB双方均建立回退机制,则双方延迟都是1。如果A、B一方建立回退机制,另一方不建立,那么建立的一方延迟是4,不建立的一方延迟是0。如果双方都不建立回退机制,则双方延迟都是3。
    在这里插入图片描述
  • 该问题的结果有一特点,即自己做出决策的收益不仅跟自己的决策有关,还跟对方的决策有关。因此存在一种“博弈”竞争关系。

1-2 Self-Interested Agents and Utility Theory

  • Self-Interested Agents:利己代理
    并不是说决策者只考虑自己或者伤害他人,而是指决策者对于世界状态有自己的独特看法,并且根据自己的判断理解做出决策。
  • Utility Theory :效用理论
    每个决策者都有自己的效用函数,表达了决策者对于决策的偏好,决策者做出决策都是为了最大化效用期望。

1-3 Define

  • Key Ingredients 关键组成
    Players:决策者。执行决策的人。
    Actions:动作。决策者可以做的事情。
    Payoffs:回报。激励决策者的东西,决策带来的回报。

  • Two Standard Representations 两种标准表达方式
    Normal Form:分别定义Players、Actions、Payoffs。
    Extensive Form:扩展定义Timing、Information。

  • 简单的博弈论问题可以使用矩阵表达,如1-1所示。

  • 复杂问题无法用矩阵表达,如经典的造反问题。共有10000000个人,每个人可以选择造反或者不造反,只有达到2000000个人才算造反成功。如果造反达到人数要求,无论决策者选择什么收益都是1;如果造反没有达到人数要求,则决策者选择造反的收益是-1;如果造反没有达到人数要求,则决策者选择不造反的收益是0。
    Players: N = { 1 , . . . , 10 , 000 , 000 } N=\{1,...,10,000,000\} N={ 1,...,10,000,000}
    Actions Set for player i i i A i = { R e v o l t , N o t } A_i=\{Revolt,Not\} Ai={ Revolt,Not}
    Utility Function for player i i i
    (1) u i ( a i ) = 1   i f { j : a j = R e v o l t } > = 2 , 000 , 000 u_i(a_i)=1 \space if \{j:a_j=Revolt\}>=2,000,000 ui(ai)=1 if{ j:aj=Revolt}>=2,000,000
    (2) u i ( a i ) = − 1   i f { j : a j = R e v o l t } < 2 , 000 , 000   a n d   a i = R e v o l t u_i(a_i)=-1 \space if \{j:a_j=Revolt\}<2,000,000 \space and \space a_i=Revolt ui(ai)=1 if{ j:aj=Revolt}<2,000,000 and ai=Revolt
    (3) u i ( a i ) = − 0   i f { j : a j = R e v o l t } < 2 , 000 , 000   a n d   a i = N o t u_i(a_i)=-0 \space if \{j:a_j=Revolt\}<2,000,000 \space and \space a_i=Not ui(ai)=0 if{ j:aj=Revolt}<2,000,000 and ai=Not


1-4 Examples

  • 囚徒困境 Prisoner’s dilemma。故事背景:两个共谋犯罪的人被关入监狱,不能互相沟通情况。如果两个人都不揭发对方,则由于证据不确定,每个人都坐牢一年;若一人揭发,而另一人沉默,则揭发者因为立功而立即获释,沉默者因不合作而入狱十年;若互相揭发,则因证据确凿,二者都判刑八年。由于囚徒无法信任对方,因此倾向于互相揭发,而不是同守沉默。
    结果的优劣程度按照A>B>C>D排序。
    在这里插入图片描述

  • Game of Pure Competition 纯竞争博弈
    博弈的双方具有完全对立的利益。
    对于双方任意动作组合,其效用之和永远为一个常数。 ∀   a ∈ A , u 1 ( a ) + u 2 ( a ) = c \forall \space a \in A,u_1(a)+u_2(a)=c  aA,u1(a)+u2(a)=c
    特殊类型:零和博弈。双方效用之和永远为0。
    举例说明:石头剪刀布游戏。
    在这里插入图片描述

  • Games of Cooperation 合作博弈
    博弈的多方具有相同的利益,利益之间不存在冲突。 ∀ a ∈ A , ∀ i , j , u i ( a ) = u j ( a ) \forall a\in A,\forall i,j,u_i(a)=u_j(a) aA,i,j,ui(a)=uj(a)
    举例说明:过马路问题。马路两头两个人想同时通行,每个人可以选择靠左或者靠右行驶。
    在这里插入图片描述


1-5 Nash Equilibrium Intro

  • Keynes Beauty Contest Game:凯恩斯选美博弈
    举办选美大赛,从1-100号候选者中选择自己认为最美的一位,获得票数最多的人获得选美冠军,投票给选美冠军的人也会得到一定的奖励。这个问题是老千层饼了,第一层的人只是自己觉得谁漂亮就选谁,比如A觉得10号最美投票给了10号;第二层的人考虑其他人的投票分布从而产生自己的决策,比如B觉得可能有很多人投票给30号,虽然自己喜欢10号也投票给30号;第三层的人觉得其他人可能也会因为考虑到第二层的因素,从而放弃自己最喜欢的转投自己认为最火爆的…这是一个无休止的猜想游戏。
  • 猜数字游戏
    每个人从1-100中选择一个整数,最后最接近平均值三分之二的人获得奖励,假设参加这项游戏的人数足够多。这个问题同样是一个千层饼问题。
    第一层的人:参赛人数足够多,我假设大家所选择的数字均匀分布,那么最后的平均值应该接近于50。那么我为了获胜应该选择的数字是 50 ∗ 2 3 = 33 50*\frac{2}{3}=33 5032=33
    第二层的人:我想大部分人都在第一层,因此他们都选择33。那么最后的平均值应该接近于33。那么我为了获胜应该选择的数字是 33 ∗ 2 3 = 22 33*\frac{2}{3}=22 3332=22
    第三层的人: 22 ∗ 2 3 = 11 22*\frac{2}{3}=11 2232=11

    第n层的人:应该选择的数是0。这就得到了纳什均衡。
    美国进行过一项调查,其中2%选择了66(没读懂题的笨蛋)、5%的选择了50(第一层)、10%的选择了33(第二层)、6%选择了22(第三层)、12%的选择了0或者1(思考到了最后)。但最后的结果平均值为19,第三层左右的人获得了最终的胜利。
  • 以上两个故事告诉我们,在投资问题或者博弈问题中,我们的层数不可太高也不可太低。太低是傻子,太高聪明反被聪明误。

1-6 Strategic Reasoning

  • 在其他人的决策确定的情况下,每一个决策者都是为了最大化个人的收获效用来做出决策。
  • 一旦纳什均衡建立,没有人可以通过改变决策跳出均衡而获利受益。
  • 如果某些决策者通过改变决策跳出均衡可以获利受益,那么说明纳什均衡还没有真正建立。
  • 纳什均衡是一个稳定的状态,但并不是一个最优的获利状态。

1-7 Best Response and Nash Equilibrium

  • Best Response 最优响应
    如果知道其他所有人的动作,那么挑选对于自己最有利的动作就变得十分简单。
    a i 表 示 第 i 个 决 策 者 所 做 出 的 决 策 a_i表示第i个决策者所做出的决策 aii
    a − i = { a 1 , . . . , a i − 1 , a i + 1 , . . . , a n } 表 示 除 去 a i 以 外 其 他 人 的 决 策 a_{-i}=\{a_1,...,a_{i-1},a_{i+1},...,a_n\}表示除去a_i以外其他人的决策 ai={ a1,...,ai1,ai+1,...,an}ai
    a = ( a i , a − i ) a=(a_i,a_{-i}) a=(ai,ai)
    a i ∗ ∈ B R ( a − i )   i f f ∀ a i ∈ A i , u i ( a i ∗ , a − i ) > = u i ( a i , a − i ) a_i^*\in BR(a_{-i})\space iff \forall a_i\in A_i,u_i(a_i^*,a_{-i})>=u_i(a_i,a_{-i}) aiBR(ai) iffaiAi,ui(ai,ai)>=ui(ai,ai)
    其中 B R ( a − i ) BR(a_{-i}) BR(ai)表示已知其他决策信息后第i个决策者做出的最优响应,最优响应不一定只有一个。并且最优相应集合中的所有元素 a i ∗ a_i^* ai都满足下列要求,当且仅当选择 a i ∗ a_i^* ai的效用大于等于选择其他所有响应的效用。
  • Pure Strategy Nash Equilibrium 纯策略纳什均衡
    实际上我们并不知道其他人会做出何种决策,因此根据他人决策制定自己的最优响应是不现实的。
    a = { a 1 , . . . , a n } i s   a   p u r e   s t r a t e g y   N a s h   e q u i l i b r i u m   i f f   ∀ i , a i ∈ B R ( a − i ) a=\{a_1,...,a_n\}is \space a \space pure \space strategy \space Nash \space equilibrium \space iff \space \forall i,a_i\in BR(a_{-i}) a={ a1,...,an}is a pure strategy Nash equilibrium iff i,aiBR(ai)

1-8 Nash Equilibrium of Example Games

  • 纳什均衡的定义
    给定其他决策者的决策,每个决策者都没有单独改变决策的动机。(也就是当前决策是最优决策)
    假设一共有A、B、C三个决策者,已知A、B决策下C做出最优决策 c ∗ c^* c,已知A、C决策下B做出最优决策 b ∗ b^* b,已知B、C决策下A做出最优决策 a ∗ a^* a,那么 ( a ∗ , b ∗ , c ∗ ) (a^*,b^*,c^*) (a,b,c)就是一个纳什均衡点。
  • 如何从决策矩阵中挑选纳什均衡点?
    看该单元格,是否左侧的值是该列左侧值的最大值,右侧的值是否是该行右侧值的最大值。
  • 纳什均衡不一定是对于全局来说最优的结果。比如囚徒困境。
  • 纳什均衡也不是自发实现的,需要有一定的沟通协商规定,总之就是直接间接获取他人的决策信息。
    在这里插入图片描述

1-9 Dominant Strategies

  • Strictly\Very Weakly Dominates 决策优势、劣势关系
    s i   s t r i c t l y   d o m i n t a t e s   s i ′   i f ∀ s − i ∈ S − i , u i ( s i , s − i ) > u i ( s i ′ , s − i ) s_i \space strictly \space domintates \space s_i^{'} \space if \forall s_{-i}\in S_{-i},u_i(s_i,s_{-i})>u_i(s_i^{'},s_{-i}) si strictly domintates si ifsiSi,ui(si,si)>ui(si,si)
    s i   v e r y   w e a k l y   d o m i n t a t e s   s i ′   i f ∀ s − i ∈ S − i , u i ( s i , s − i ) > = u i ( s i ′ , s − i ) s_i \space very \space weakly \space domintates \space s_i^{'} \space if \forall s_{-i}\in S_{-i},u_i(s_i,s_{-i})>=u_i(s_i^{'},s_{-i}) si very weakly domintates si ifsiSi,ui(si,si)>=ui(si,si)
    严格压制关系与轻微压制关系的区别就在于取不取等号。以 s i s_i si严格压制决策 s i ′ s_i^{'} si为例,是指无论其他决策者制定什么决策,当前决策者选择 s i s_i si的效用一定严格优于选择 s i ′ s_i^{'} si
  • 如果一个决策压制其他所有决策,那么称之为占优策略。如果该决策严格压制每一个其他决策,那么称之为严格占优策略,并且该策略唯一。由占优策略组成的策略组合一定是纳什均衡点,全部由严格占优策略组成的策略组合一定是唯一的纳什均衡点

1-10 Pareto Optimality

  • 之前对于决策的选择以及评估都是站在每个决策者的角度,现在我们跳出决策者的身份,以一个外界观察者的角度来评估决策。我们只考虑最直接的一种评估方式,如果决策组合 O O O对于所有决策者的效用都优于决策 O ′ O^{'} O,那么我们称 O   P a r e t o − d o m i n a t e s   O ′ O \space Pareto-dominates \space O^{'} O Paretodominates O
    比如说 O ( 7 , 8 ) 、 O ′ ( 4 , 5 ) , 那 么 我 们 可 得 O   P a r e t o − d o m i n a t e s   O ′ O(7,8)、O^{'}(4,5),那么我们可得O \space Pareto-dominates \space O^{'} O(7,8)O(4,5)O Paretodominates O
  • Pareto-Optimal 帕累托最优
    一个决策组合 O ∗ O^* O,如果没有其他任何一个决策组合帕累托压制 O ∗ O^* O,那么称该决策组合是帕累托最优。
    帕累托最优定义的并不是压制别人的能力,而是不被其他人压制。
    一场游戏中可能有多个帕累托最优决策组合。
    一场游戏中最少含有一个帕累托最优决策组合。
  • 实例分析
    在这里插入图片描述
    注意对于零和博弈问题来说,所有决策组合都是帕累托最优。

2-1 Mixed Strategies and Nash Equilibrium Taste

  • 以安保设置检查关卡、攻击者制定策略攻击关卡的博弈问题来引出混合策略。

2-2 Mixed Strategies and Nash Equilibrium

  • 纯策略每次决策选择的是具体的动作,而混合策略每次决策选择的是概率分布。纯策略纳什均衡是混合策略纳什均衡的一种。
  • 纯策略均衡:每个决策者都是根据已知其他决策者的选择从而做出决策,并且在已知其他决策者选择的前提下没有改变自己决策的动机。混合策略均衡:每个决策者只可以调整自己的决策分布,而自己的效用则由其他决策者的决策分布决定。
  • 在博弈游戏中,决策者每次选择固定的决策方式是最愚蠢的结果,因为竞争者会根据你的固定选择从而制定策略获利。因此决策者应该随机决策来迷惑对手,让对手猜不透你的选择。
  • 区分定义:在纯策略中每个决策者每一步决定的是一个动作 a i a_i ai;在混合策略中每个决策者每一步决定的是一个策略 s i s_i si,策略包含多个动作及对应概率。针对第 i i i个决策者所有策略的组合为 S i = { s 1 , . . . , s n } S_i=\{s_1,...,s_n\} Si={ s1,...,sn},针对所有决策者的策略组合为各个决策者的策略笛卡尔积 S = S 1 × . . . × S n S=S_1\times ...\times S_n S=S1×...×Sn
  • 在纯策略中我们针对每个决策者的不同动作衡量效用,在混合策略中我们针对每个决策者的不同策略概率分布来衡量效用,换句话说计算效用期望
    u i ( s ) = ∑ a ∈ A u i ( a ) P r ( a ∣ s ) , P r ( a ∣ s ) = ∏ j ∈ N s j ( a j ) u_i(s)=\sum_{a\in A}u_i(a)Pr(a|s),Pr(a|s)=\prod_{j\in N}s_j(a_j) ui(s)=aAui(a)Pr(as),Pr(as)=jNsj(aj)
  • 混合策略中的最优响应以及纳什均衡
    只需要将之前的 a i a_i ai全部替换成 s i s_i si即可。
    s i ∗ ∈ B R ( s − i )   i f f ∀ s i ∈ S i , u i ( s i ∗ , s − i ) > = u i ( s i , s − i ) s_i^*\in BR(s_{-i})\space iff \forall s_i\in S_i,u_i(s_i^*,s_{-i})>=u_i(s_i,s_{-i}) siBR(si) iffsiSi,ui(si,si)>=ui(si,si)
    s = { s 1 , . . . , s n } i s   a   N a s h   e q u i l i b r i u m   i f f   ∀ i , s i ∈ B R ( s − i ) s=\{s_1,...,s_n\}is \space a \space Nash \space equilibrium \space iff \space \forall i,s_i\in BR(s_{-i}) s=
  • 48
    点赞
  • 256
    收藏
    觉得还不错? 一键收藏
  • 10
    评论
评论 10
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值