题目:http://acm.hdu.edu.cn/showproblem.php?pid=3183
题意:对于一个序列A[1...N],一共N个数,除去M个数使剩下的数组成的整数最小。
也就是说在A[1...N]中顺次选取N-M个数,使值最小。
对于序列A[1...N],所得串的第一位一定在数组A中的区间[1,M+1]中出现,第二位在[2,M+2]出现
原因:假设A数组就只有6个数,分别是A[1],A[2],A[3],A[4],A[5],A[6],我们去掉M=2个数,使形成的值最小。
那么我们此时的N=6,M=2,N-M=4
则我们说形成的4位数的第一位一定在区间[1,3]中出现,因为如果区间范围再大点,比如[1,4],这样就不科学了,因为第一位一定不会是A[4],更不会是
A[5],A[6],我们假设可以是A[4],那么后面只有A[5],A[6]两位数了,这样的话最多只可能形成3位数,绝对不能形成N-M=4位了。
当然到了这里,我们就可以这样做了,第一位可以在区间[1,M+1]里面找,假设第一位在位置x,因为第二位肯定在第一位的后面,所以第二位一定存在于
区间[x+1,M+2],为什么是M+2,因为第一位已经确定了,现在只需要确定N-M-1位了,所以区间就可以向后增加1,一直这样循环下去,就可以找到了。
#include <stdio.h>
#include <math.h>
#include <string.h>
#define MAX 1050
int n,m;
char arr[MAX];
int mindp[MAX][MAX];
char res[MAX];
int RMQ(int l,int r);
int min_m(int i,int j) // 对下标RMQ,直接对数字字符RMQ不知道为什么一直WA
{
return arr[i] <= arr[j] ? i:j;
}
void Create()
{
int i,j,t;
for (i = 0; i < n; ++i)
mindp[i][0] = i;
for (j = 1; (1<<j) <= n; ++j)
{
for (i = 0; i+(1<<j)-1 < n; ++i)
{
t = i + ( 1 << (j-1) );
mindp[i][j] = min_m(mindp[i][j-1],mindp[t][j-1]);
}
}
}
int RMQ(int l,int r)
{
int k = (int)(log(r-l+1.0)/log(2.0));
return min_m(mindp[l][k],mindp[r-(1<<k)+1][k]);
}
int main()
{
int i,j;
while( ~scanf("%s%d",arr,&m) )
{
n = strlen(arr);
Create();
m = n -m;
i = j = 0;
while(m--)
{
i=RMQ(i,n-m-1);
res[j++]=arr[i++];
}
for(i=0;i<j;i++)
if(res[i] != '0')
break;
if(i == j )
putchar('0');
else
{
while(i<j)
{
printf("%c",res[i]);
i++;
}
}
putchar('\n');
}
return 0;
}