Knights of the Round Table

题目链接

  • 题意:
    n个人开会,会议人数至少为三且为奇数。有些人相互憎恨,这些人不能邻座。统计有几个人不能参加任意一个会议
    输入:n,m。m行包括两个整数k1、k2表示两个人相互憎恨。输入结束标志为n=m=0
    输出:无法参加任何会议的人数
  • 分析:
    对于存在割点的图,割点两侧的人肯定不能在一个会议中(不能构成环)。而对于不存在割点的一个极大子图,显然任意两个点都可以在一个会议中。然后的问题就是保证奇环。这里就要用到一个十分重要的性质:二分图中没有奇环。那么就可以判断一个图是否是二分图,如果不是,那么必然有一个奇环。然后利用这个奇环,对于这个图中的任意一点v可以构造出包括v的一个奇环(证明参见大白书P317)
  • 关键:
    分析出能参加会议的人必然在一个点双连通分量中
    利用二分图判断图中存在奇环
    图中存在奇环,那么对于任意一个点v,必然有包含v的奇环
    判断双连通分量是否是二分图时对割点的处理
const int MAXV = 1100;
const int MAXE = 1000100;

//无向图的双连通分量
int pre[MAXV], iscut[MAXV], bccno[MAXV], dfs_clock, bcc_cnt; // 割顶的bccno无意义
struct Edge
{
    int u, v;
};
vector<int> G[MAXV], bcc[MAXV];
stack<Edge> S;

int dfs(int u, int fa)
{
    int lowu = pre[u] = ++dfs_clock;
    int child = 0;
    for(int i = 0; i < G[u].size(); i++)
    {
        int v = G[u][i];
        Edge e = (Edge){u, v};
        if(!pre[v])   // 没有访问过v
        {
            S.push(e);
            child++;
            int lowv = dfs(v, u);
            lowu = min(lowu, lowv); // 用后代的low函数更新自己
            if(lowv >= pre[u])
            {
                iscut[u] = true;
                bcc_cnt++;
                bcc[bcc_cnt].clear();
                for(;;)
                {
                    Edge x = S.top();
                    S.pop();
                    if(bccno[x.u] != bcc_cnt)
                    {
                        bcc[bcc_cnt].push_back(x.u);
                        bccno[x.u] = bcc_cnt;
                    }
                    if(bccno[x.v] != bcc_cnt)
                    {
                        bcc[bcc_cnt].push_back(x.v);
                        bccno[x.v] = bcc_cnt;
                    }
                    if(x.u == u && x.v == v) break;
                }
            }
        }
        else if(pre[v] < pre[u] && v != fa)
        {
            S.push(e);
            lowu = min(lowu, pre[v]); // 用反向边更新自己
        }
    }
    if(fa < 0 && child == 1) iscut[u] = 0;
    return lowu;
}

void find_bcc(int n)
{
    // 调用结束后S保证为空,所以不用清空
    memset(pre, 0, sizeof(pre));
    memset(iscut, 0, sizeof(iscut));
    memset(bccno, 0, sizeof(bccno));
    dfs_clock = bcc_cnt = 0;
    for(int i = 0; i < n; i++)
        if(!pre[i]) dfs(i, -1);
};

int color[MAXV];
bool bipartite(int u, int b)
{
    REP(i, G[u].size())
    {
        int v = G[u][i];
        if (bccno[v] != b) continue;
        if (color[v] == color[u]) return false;
        if (!color[v])
        {
            color[v] = 3 - color[u];
            if (!bipartite(v, b)) return false;
        }
    }
    return true;
}

bool can[MAXV][MAXV];
bool odd[MAXV];

int main()
{
//    freopen("in.txt", "r", stdin);
    int n, kase;
    while (~RII(n, kase) && n)
    {
        CLR(can, true);
        CLR(odd, false);
        REP(i, n) G[i].clear();

        REP(i, kase)
        {
            int a, b;
            RII(a, b); a--; b--;
            can[a][b] = can[b][a] = false;
        }
        REP(i, n) FF(j, i + 1, n)
            if (can[i][j])
            {
                G[i].push_back(j);
                G[j].push_back(i);
            }
        find_bcc(n);
        int ans = 0;
        FE(i, 1, bcc_cnt)
        {
            //主要是处理割点
            REP(j, bcc[i].size()) bccno[bcc[i][j]] = i;
            color[bcc[i][0]] = 1;
            if (!bipartite(bcc[i][0], i))
            {
                REP(j, bcc[i].size())
                {
                    odd[bcc[i][j]] = true;
                    color[bcc[i][j]] = 0;
                }
            }
            REP(j, bcc[i].size()) color[bcc[i][j]] = 0;
        }
        REP(i, n)
            if (!odd[i])
                ans++;
        WI(ans);
    }
    return 0;
}



  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值