#include <bits/stdc++.h>
using namespace std;
//debug
#define _DEBUG
#ifdef _DEBUG
#define dt(a) << (#a) << "=" << (a) << " "
#define debugI(a) std::cout dt(a) << std::endl
#define debugII(a, b) std::cout dt(a) dt(b) << std::endl
#define debugIII(a, b, c) std::cout dt(a) dt(b) dt(c) << std::endl
#define debugIV(a, b, c, d) std::cout dt(a) dt(b) dt(c) dt(d) << std::endl
#define debugV(a, b, c, d, e) std::cout dt(a) dt(b) dt(c) dt(d) dt(e) << std::endl
#else
#define debugI(v)
#define debugII(a, b)
#define debugIII(a, b, c)
#define debugIV(a, b, c, d)
#define debugV(a, b, c, d, e)
#endif
#define sqr(x) (x) * (x)
typedef long long LL;
typedef unsigned long long ULL;
const int INF = 0x3f3f3f3f;
const double EPS = 1e-9;
const int MOD = 1000000007;
const double PI = acos(-1.0);
const int MAXN = 1100000;
///*************基础***********/
double torad(double deg) { return deg / 180 * PI; }
int dcmp(double x)
{
if(fabs(x) < EPS) return 0;
else return x < 0 ? -1 : 1;
}
struct Point
{
double x, y;
Point(double x=0, double y=0):x(x),y(y) { }
void read()
{
scanf("%lf%lf", &x, &y);
}
};
typedef vector<Point> Polygon;
typedef Point Vector;
Vector operator+ (Vector A, Vector B) { return Vector(A.x + B.x, A.y + B.y); }
Vector operator- (Point A, Point B) { return Vector(A.x - B.x, A.y - B.y); }
Vector operator* (Vector A, double p) { return Vector(A.x * p, A.y * p); }
Vector operator/ (Vector A, double p) { return Vector(A.x / p, A.y / p); }
bool operator < (Point a, Point b) { return a.x < b.x || (a.x == b.x && a.y < b.y); }
bool operator == (Point a, Point b) { return dcmp(a.x - b.x) == 0 && dcmp(a.y - b.y) == 0; }
double Dot(Vector A, Vector B){ return A.x * B.x + A.y * B.y;}
double Length(Vector A) { return sqrt(Dot(A, A)); }
double Angle(Vector A, Vector B) { return acos(Dot(A, B) / Length(A) / Length(B)); }
double angle(Vector v) { return atan2(v.y, v.x); }
double Cross(Vector A, Vector B) { return A.x * B.y - A.y * B.x; }
Vector Unit(Vector x) { return x / Length(x); } //单位向量
Vector Normal(Vector x) { return Point(-x.y, x.x) / Length(x); } //垂直法向量
double Area2(Point A, Point B, Point C) { return Cross(B - A, C - A); }
Vector Rotate(Vector A, double rad)
{
return Vector(A.x * cos(rad) - A.y*sin(rad), A.x*sin(rad) + A.y * cos(rad));
}
/****************直线与线段**************/
//求直线p+tv和q+tw的交点 Cross(v, w) == 0无交点
Point GetLineIntersection(Point p, Vector v, Point q, Vector w)
{
Vector u = p - q;
double t = Cross(w, u) / Cross(v, w);
return p + v * t;
}
//点p在直线ab的投影
Point GetLineProjection(Point P, Point A, Point B)
{
Vector v = B - A;
return A + v * (Dot(v, P - A) / Dot(v, v));
}
//点到直线距离
double DistanceToLine(Point P, Point A, Point B)
{
Vector v1 = B - A, v2 = P - A;
return fabs(Cross(v1, v2)) / Length(v1); // 如果不取绝对值,得到的是有向距离
}
//点在p线段上(包括端点)
bool OnSegment(Point p, Point a1, Point a2)
{
return dcmp(Cross(a1-p, a2-p)) == 0 && dcmp(Dot(a1-p, a2-p)) <= 0;
}
// 过两点p1, p2的直线一般方程ax+by+c=0
// (x2-x1)(y-y1) = (y2-y1)(x-x1)
void getLineGeneralEquation(Point p1, Point p2, double& a, double& b, double &c)
{
a = p2.y - p1.y;
b = p1.x - p2.x;
c = -a * p1.x - b * p1.y;
}
//点到线段距离
double DistanceToSegment(Point p, Point a, Point b)
{
if(a == b) return Length(p - a);
Vector v1 = b - a, v2 = p - a, v3 = p - b;
if(dcmp(Dot(v1, v2)) < 0) return Length(v2);
else if(dcmp(Dot(v1, v3)) > 0) return Length(v3);
else return fabs(Cross(v1, v2)) / Length(v1);
}
//两线段最近距离
double dis_pair_seg(Point p1, Point p2, Point p3, Point p4)
{
return min(min(DistanceToSegment(p1, p3, p4), DistanceToSegment(p2, p3, p4)),
min(DistanceToSegment(p3, p1, p2), DistanceToSegment(p4, p1, p2)));
}
//线段相交判定
bool SegmentProperIntersection(Point a1, Point a2, Point b1, Point b2)
{
double c1 = Cross(a2 - a1, b1 - a1), c2 = Cross(a2 - a1, b2 - a1),
c3 = Cross(b2 - b1, a1 - b1), c4 = Cross(b2 - b1, a2 - b1);
return dcmp(c1) * dcmp(c2) < 0 && dcmp(c3) * dcmp(c4) < 0;
}
// 有向直线。它的左边就是对应的半平面
struct Line
{
Point p, q; // 直线上任意一点,p作为起点
Vector v; // 方向向量
double ang; // 极角,即从x正半轴旋转到向量v所需要的角(弧度)
Line() {}
// Line(Point P, Vector v):p(P),v(v)
// {
// ang = atan2(v.y, v.x);
// }
Line(Point P, Point Q):p(P), q(Q)
{
v = q - p;
ang = atan2(v.y, v.x);
}
bool operator < (const Line& L) const
{
return ang < L.ang;
}
Point point(double t)
{
return p + v * t;
}
Line move(double d)
{
return Line(p + Normal(v) * d, v);
}
void read()
{
Point q;
p.read(), q.read();
v = q - p;
ang = atan2(v.y, v.x);
}
};
//两直线交点
Point GetLineIntersection(Line a, Line b)
{
return GetLineIntersection(a.p, a.v, b.p, b.v);
}
// 点p在有向直线L的左边(线上不算)
bool OnLeft(const Line& L, const Point& p)
{
return Cross(L.v, p - L.p) > 0;
}
二直线交点,假定交点惟一存在
//Point GetLineIntersection(const Line& a, const Line& b) {
// Vector u = a.P-b.P;
// double t = Cross(b.v, u) / Cross(a.v, b.v);
// return a.P+a.v*t;
//}
// 半平面交主过程
vector<Point> HalfplaneIntersection(vector<Line> L)
{
int n = L.size();
sort(L.begin(), L.end()); // 按极角排序
int first, last; // 双端队列的第一个元素和最后一个元素的下标
vector<Point> p(n); // p[i]为q[i]和q[i+1]的交点
vector<Line> q(n); // 双端队列
vector<Point> ans; // 结果
q[first=last=0] = L[0]; // 双端队列初始化为只有一个半平面L[0]
for(int i = 1; i < n; i++)
{
while(first < last && !OnLeft(L[i], p[last-1])) last--;
while(first < last && !OnLeft(L[i], p[first])) first++;
q[++last] = L[i];
if(fabs(Cross(q[last].v, q[last-1].v)) < EPS) // 两向量平行且同向,取内侧的一个
{
last--;
if(OnLeft(q[last], L[i].p)) q[last] = L[i];
}
if(first < last) p[last-1] = GetLineIntersection(q[last-1], q[last]);
}
while(first < last && !OnLeft(q[first], p[last-1])) last--; // 删除无用平面
if(last - first <= 1) return ans; // 空集
p[last] = GetLineIntersection(q[last], q[first]); // 计算首尾两个半平面的交点
// 从deque复制到输出中
for(int i = first; i <= last; i++) ans.push_back(p[i]);
return ans;
}
/***********多边形**************/
double PolygonArea(vector<Point> p) {
int n = p.size();
double area = 0;
for(int i = 1; i < n - 1; i++)
area += Cross(p[i]-p[0], p[i+1]-p[0]);
return area / 2;
}
//判断点是否在多边形内
int isPointInPolygon(Point p, Polygon poly)
{
int wn = 0;
int n = poly.size();
for (int i = 0; i < n; i++)
{
if (OnSegment(p, poly[i], poly[(i + 1) % n])) return -1; //边界
int k = dcmp(Cross(poly[(i + 1) % n] - poly[i], p - poly[i]));
int d1 = dcmp(poly[i].y - p.y);
int d2 = dcmp(poly[(i + 1) % n].y - p.y);
if (k > 0 && d1 <= 0 && d2 > 0) wn++;
if (k < 0 && d2 <= 0 && d1 > 0) wn--;
}
if (wn != 0) return 1; //内部
return 0; //外部
}
//多边形重心 点集逆时针给出
Point PolyGravity(Point *p, int n) {
Point tmp, g = Point(0, 0);
double sumArea = 0, area;
for (int i=2; i<n; ++i) {
area = Cross(p[i-1]-p[0], p[i]-p[0]);
sumArea += area;
tmp.x = p[0].x + p[i-1].x + p[i].x;
tmp.y = p[0].y + p[i-1].y + p[i].y;
g.x += tmp.x * area;
g.y += tmp.y * area;
}
g.x /= (sumArea * 3.0); g.y /= (sumArea * 3.0);
return g;
}
//多边形重心计算模板
Point bcenter(vector<Point> pnt)
{
int n = pnt.size();
Point p, s;
double tp, area = 0, tpx = 0, tpy = 0;
p.x = pnt[0].x;
p.y = pnt[0].y;
for (int i = 1; i <= n; ++i)
{
s.x = pnt[(i == n) ? 0 : i].x;
s.y = pnt[(i == n) ? 0 : i].y;
tp = (p.x * s.y - s.x * p.y);
area += tp / 2;
tpx += (p.x + s.x) * tp;
tpy += (p.y + s.y) * tp;
p.x = s.x;
p.y = s.y;
}
s.x = tpx / (6 * area);
s.y = tpy / (6 * area);
return s;
}
// 点集凸包
// 如果希望在凸包的边上有输入点,把两个 <= 改成 <
// 注意:输入点集会被修改
vector<Point> ConvexHull(vector<Point>& p)
{
// 预处理,删除重复点
sort(p.begin(), p.end());
p.erase(unique(p.begin(), p.end()), p.end());
int n = p.size();
int m = 0;
vector<Point> ch(n+1);
for(int i = 0; i < n; i++)
{
while(m > 1 && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--;
ch[m++] = p[i];
}
int k = m;
for(int i = n-2; i >= 0; i--)
{
while(m > k && Cross(ch[m-1]-ch[m-2], p[i]-ch[m-2]) <= 0) m--;
ch[m++] = p[i];
}
if(n > 1) m--;
ch.resize(m);
return ch;
}
double Dist2(Point a, Point b)
{
return sqr(a.x - b.x) + sqr(a.y - b.y);
}
// 返回点集直径的平方
double diameter2(vector<Point>& points)
{
vector<Point> p = ConvexHull(points);
int n = p.size();
if(n == 1) return 0;
if(n == 2) return Dist2(p[0], p[1]);
p.push_back(p[0]); // 免得取模
double ans = 0;
for(int u = 0, v = 1; u < n; u++)
{
// 一条直线贴住边p[u]-p[u+1]
for(;;)
{
// 当Area(p[u], p[u+1], p[v+1]) <= Area(p[u], p[u+1], p[v])时停止旋转
// 即Cross(p[u+1]-p[u], p[v+1]-p[u]) - Cross(p[u+1]-p[u], p[v]-p[u]) <= 0
// 根据Cross(A,B) - Cross(A,C) = Cross(A,B-C)
// 化简得Cross(p[u+1]-p[u], p[v+1]-p[v]) <= 0
int diff = Cross(p[u+1]-p[u], p[v+1]-p[v]);
if(diff <= 0)
{
ans = max(ans, Dist2(p[u], p[v])); // u和v是对踵点
if(diff == 0)
ans = max(ans, Dist2(p[u], p[v+1])); // diff == 0时u和v+1也是对踵点
break;
}
v = (v + 1) % n;
}
}
return ans;
}
//两凸包最近距离
double RC_Distance(Point *ch1, Point *ch2, int n, int m)
{
int q=0, p=0;
for (int i = 0; i < n; ++i) if(ch1[i].y-ch1[p].y < -EPS) p=i;
for (int i = 0; i < n; ++i) if(ch2[i].y-ch2[q].y > EPS) q=i;
ch1[n]=ch1[0];
ch2[m]=ch2[0];
double tmp, ans=1e100;
for (int i = 0; i < n; ++i)
{
while((tmp = Cross(ch1[p+1]-ch1[p], ch2[q+1]-ch1[p]) - Cross(ch1[p+1]-ch1[p], ch2[q]- ch1[p])) > EPS)
q=(q+1)%m;
if(tmp < -EPS) ans = min(ans,DistanceToSegment(ch2[q],ch1[p],ch1[p+1]));
else ans = min(ans,dis_pair_seg(ch1[p],ch1[p+1],ch2[q],ch2[q+1]));
p=(p+1)%n;
}
return ans;
}
//两凸包最近距离
//使用vector
double RC_Distance(vector<Point> ch1, vector<Point> ch2)
{
int q = 0, p = 0, n = ch1.size(), m = ch2.size();
for (int i = 0; i < n; ++i) if(ch1[i].y-ch1[p].y < -EPS) p=i;
for (int i = 0; i < m; ++i) if(ch2[i].y-ch2[q].y > EPS) q=i;
ch1.push_back(ch1[0]), ch2.push_back(ch2[0]);
double tmp, ans=1e100;
for (int i = 0; i < n; ++i)
{
while((tmp = Cross(ch1[p+1]-ch1[p], ch2[q+1]-ch1[p]) - Cross(ch1[p+1]-ch1[p], ch2[q]- ch1[p])) > EPS)
q=(q+1)%m;
if(tmp < -EPS) ans = min(ans,DistanceToSegment(ch2[q],ch1[p],ch1[p+1]));
else ans = min(ans,dis_pair_seg(ch1[p],ch1[p+1],ch2[q],ch2[q+1]));
p=(p+1)%n;
}
return ans;
}
//凸包最大内接三角形
double RC_Triangle(Point* res,int n)
{
if(n < 3) return 0;
double ans = 0, tmp;
res[n] = res[0];
int j, k;
for (int i = 0; i < n; ++i)
{
j = (i+1)%n;
k = (j+1)%n;
while((j != k) && (k != i))
{
while(Cross(res[j] - res[i], res[k+1] - res[i]) > Cross(res[j] - res[i], res[k] - res[i])) k= (k+1)%n;
tmp = Cross(res[j] - res[i], res[k] - res[i]);
if(tmp > ans) ans = tmp;
j = (j+1)%n;
}
}
return ans;
}
//凸包最大内接三角形
double RC_Triangle(vector<Point> res, Point& a, Point& b, Point& c)
{
int n = res.size();
if(n < 3) return 0;
double ans=0, tmp;
res.push_back(res[0]);
int j, k;
for (int i = 0; i < n; ++i)
{
j = (i+1)%n;
k = (j+1)%n;
while((j != k) && (k != i))
{
while(Cross(res[j] - res[i], res[k+1] - res[i]) > Cross(res[j] - res[i], res[k] - res[i])) k= (k+1)%n;
tmp = Cross(res[j] - res[i], res[k] - res[i]);
if(tmp > ans)
{
a = res[i], b = res[j], c = res[k];
ans = tmp;
}
j = (j+1)%n;
}
}
return ans;
}
//判断两凸包是否有交点
bool ConvexPolygonDisjoint(const vector<Point> ch1, const vector<Point> ch2)
{
int c1 = ch1.size();
int c2 = ch2.size();
for(int i = 0; i < c1; i++)
if(isPointInPolygon(ch1[i], ch2) != 0)
return false; // 内部或边界上
for(int i = 0; i < c2; i++)
if(isPointInPolygon(ch2[i], ch1) != 0)
return false; // 内部或边界上
for(int i = 0; i < c1; i++)
for(int j = 0; j < c2; j++)
if(SegmentProperIntersection(ch1[i], ch1[(i+1)%c1], ch2[j], ch2[(j+1)%c2]))
return false;
return true;
}
double dist(Point a, Point b)
{
return Length(a - b);
}
//模拟退火求费马点 保存在ptres中
double fermat_point(Point *pt, int n, Point& ptres)
{
Point u, v;
double step = 0.0, curlen, explen, minlen;
int i, j, k;
bool flag;
u.x = u.y = v.x = v.y = 0.0;
for (int i = 0; i < n; ++i)
{
step += fabs(pt[i].x) + fabs(pt[i].y);
u.x += pt[i].x;
u.y += pt[i].y;
}
u.x /= n;
u.y /= n;
flag = 0;
while(step > EPS)
{
for(k = 0; k < 10; step /= 2, ++k)
for(i = -1; i <= 1; ++i)
for(j = -1; j <= 1; ++j)
{
v.x = u.x + step*i;
v.y = u.y + step*j;
curlen = explen = 0.0;
for (int idx = 0; idx < n; ++idx)
{
curlen += dist(u, pt[idx]);
explen += dist(v, pt[idx]);
}
if(curlen > explen)
{
u = v;
minlen = explen;
flag = 1;
}
}
}
ptres = u;
return flag ? minlen : curlen;
}
//多边形费马点
//到所有顶点的距离和最小
Point Fermat(int np, Point* p)
{
double nowx = 0, nowy = 0;
double nextx = 0, nexty = 0;
for (int i = 0; i < np; ++i)
{
nowx += p[i].x;
nowy += p[i].y;
}
for (nowx /= np, nowy /= np;; nowx = nextx, nowy = nexty)
{
double topx = 0, topy = 0, bot = 0;
for (int i = 0; i < np; ++i)
{
double d = sqrt(sqr(nowx - p[i].x) + sqr(nowy - p[i].y));
topx += p[i].x / d;
topy += p[i].y / d;
bot += 1 / d;
}
nextx = topx / bot;
nexty = topy / bot;
if (dcmp(nextx - nowx) == 0 && dcmp(nexty - nowy) == 0)
break;
}
Point fp;
fp.x = nowx;
fp.y = nowy;
return fp;
}
//最近点对
//使用前先对输入的point进行排序,使用cmpxy函数
Point point[MAXN];
int tmpt[MAXN];
double dist(int x, int y)
{
Point& a = point[x];
Point& b = point[y];
return sqrt(sqr(a.x - b.x) + sqr(a.y - b.y));
}
bool cmpxy(Point a, Point b)
{
if(a.x != b.x)
return a.x < b.x;
return a.y < b.y;
}
bool cmpy(int a, int b)
{
return point[a].y < point[b].y;
}
double Closest_Pair(int left, int right)
{
double d = INF;
if(left==right)
return d;
if(left + 1 == right)
return dist(left, right);
int mid = (left+right)>>1;
double d1 = Closest_Pair(left,mid);
double d2 = Closest_Pair(mid+1,right);
d = min(d1,d2);
int k=0;
//分离出宽度为d的区间
for (int i = left; i <= right; i++)
{
if(fabs(point[mid].x-point[i].x) <= d)
tmpt[k++] = i;
}
sort(tmpt,tmpt+k,cmpy);
//线性扫描
for (int i = 0; i < k; ++i)
{
for(int j = i+1; j < k && point[tmpt[j]].y-point[tmpt[i]].y<d; j++)
{
double d3 = dist(tmpt[i],tmpt[j]);
if(d > d3)
d = d3;
}
}
return d;
}
/************圆************/
struct Circle
{
Point c;
double r;
Circle() {}
Circle(Point c, double r):c(c), r(r) {}
Point point(double a) //根据圆心角求点坐标
{
return Point(c.x+cos(a)*r, c.y+sin(a)*r);
}
void read()
{
scanf("%lf%lf%lf", &c.x, &c.y, &r);
}
};
//求a点到b点(逆时针)在的圆上的圆弧长度
double DisOnCircle(Point a, Point b, Circle C)
{
double ang1 = angle(a - C.c);
double ang2 = angle(b - C.c);
if (ang2 < ang1) ang2 += 2 * PI;
return C.r * (ang2 - ang1);
}
//直线与圆交点 返回个数
int getLineCircleIntersection(Line L, Circle C, double& t1, double& t2, vector<Point>& sol)
{
double a = L.v.x, b = L.p.x - C.c.x, c = L.v.y, d = L.p.y - C.c.y;
double e = a*a + c*c, f = 2*(a*b + c*d), g = b*b + d*d - C.r*C.r;
double delta = f*f - 4*e*g; // 判别式
if(dcmp(delta) < 0) return 0; // 相离
if(dcmp(delta) == 0)
{
// 相切
t1 = t2 = -f / (2 * e);
sol.push_back(L.point(t1));
return 1;
}
// 相交
t1 = (-f - sqrt(delta)) / (2 * e);
sol.push_back(L.point(t1));
t2 = (-f + sqrt(delta)) / (2 * e);
sol.push_back(L.point(t2));
return 2;
}
//两圆交点 返回个数
int getCircleCircleIntersection(Circle C1, Circle C2, vector<Point>& sol)
{
double d = Length(C1.c - C2.c);
if(dcmp(d) == 0)
{
if(dcmp(C1.r - C2.r) == 0) return -1; // 重合,无穷多交点
return 0;
}
if(dcmp(C1.r + C2.r - d) < 0) return 0;
if(dcmp(fabs(C1.r-C2.r) - d) > 0) return 0;
double a = angle(C2.c - C1.c);
double da = acos((C1.r*C1.r + d*d - C2.r*C2.r) / (2*C1.r*d));
Point p1 = C1.point(a-da), p2 = C1.point(a+da);
sol.push_back(p1);
if(p1 == p2) return 1;
sol.push_back(p2);
return 2;
}
// 过点p到圆C的切线。v[i]是第i条切线的向量。返回切线条数
int getTangents(Point p, Circle C, Vector* v)
{
Vector u = C.c - p;
double dist = Length(u);
if(dist < C.r) return 0;
else if(dcmp(dist - C.r) == 0) // p在圆上,只有一条切线
{
v[0] = Rotate(u, PI/2);
return 1;
}
else
{
double ang = asin(C.r / dist);
v[0] = Rotate(u, -ang);
v[1] = Rotate(u, +ang);
return 2;
}
}
//两圆的公切线, -1表示无穷条切线
//返回切线的条数, -1表示无穷条切线
//a[i]和b[i]分别是第i条切线在圆A和圆B上的切点
int getTangents(Circle A, Circle B, Point* a, Point* b)
{
int cnt = 0;
if (A.r < B.r) swap(A, B), swap(a, b);
///****************************
int d2 = (A.c.x - B.c.x) * (A.c.x - B.c.x) + (A.c.y - B.c.y) * (A.c.y - B.c.y);
int rdiff = A.r - B.r;
int rsum = A.r + B.r;
if (d2 < rdiff * rdiff) return 0; //内含
///***************************************
double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
if (d2 == 0 && A.r == B.r) return -1; //无线多条切线
if (d2 == rdiff * rdiff) //内切, 1条切线
{
///**********************
a[cnt] = A.point(base); b[cnt] = B.point(base); cnt++;
return 1;
}
//有外公切线
double ang = acos((A.r - B.r) / sqrt(d2 * 1.0));
a[cnt] = A.point(base + ang); b[cnt] = B.point(base + ang); cnt++;
a[cnt] = A.point(base - ang); b[cnt] = B.point(base - ang); cnt++;
if (d2 == rsum * rsum) //一条内公切线
{
a[cnt] = A.point(base); b[cnt] = B.point(PI + base); cnt++;
}
else if (d2 > rsum * rsum) //两条内公切线
{
double ang = acos((A.r + B.r) / sqrt(d2 * 1.0));
a[cnt] = A.point(base + ang); b[cnt] = B.point(PI + base + ang); cnt++;
a[cnt] = A.point(base - ang); b[cnt] = B.point(PI + base - ang); cnt++;
}
return cnt;
}
// 过点p到圆C的切点
int getTangentPoints(Point p, Circle C, vector<Point>& v)
{
Vector u = C.c - p;
double dist = Length(u);
if(dist < C.r) return 0;
else if(dcmp(dist - C.r) == 0) // p在圆上,只有一条切线
{
v.push_back(p);
return 1;
}
else
{
double ang = asin(C.r / dist);
double d = sqrt(dist * dist - C.r * C.r);
v.push_back(p + Unit(Rotate(u, -ang)) * d);
v.push_back(p + Unit(Rotate(u, +ang)) * d);
return 2;
}
}
//圆A与圆B的切点
void getTangentPoints(Circle A, Circle B, vector<Point>& a)
{
if (A.r < B.r) swap(A, B);
///****************************
int d2 = sqr(A.c.x - B.c.x) + sqr(A.c.y - B.c.y);
int rdiff = A.r - B.r, rsum = A.r + B.r;
if (d2 < rdiff * rdiff) return; //内含
///***************************************
double base = atan2(B.c.y - A.c.y, B.c.x - A.c.x);
if (d2 == 0 && A.r == B.r) return; //无线多条切线
if (d2 == rdiff * rdiff) //内切, 1条切线
{
///**********************
a.push_back(A.point(base));
a.push_back(B.point(base));
return;
}
//有外公切线
double ang = acos((A.r - B.r) / sqrt(d2 * 1.0));
a.push_back(A.point(base + ang)); a.push_back(B.point(base + ang));
a.push_back(A.point(base - ang)); a.push_back(B.point(base - ang));
if (d2 == rsum * rsum) //一条内公切线
{
a.push_back(A.point(base));
a.push_back(B.point(PI + base));
}
else if (d2 > rsum * rsum) //两条内公切线
{
double ang = acos((A.r + B.r) / sqrt(d2 * 1.0));
a.push_back(A.point(base + ang));
a.push_back(B.point(PI + base + ang));
a.push_back(A.point(base - ang));
a.push_back(B.point(PI + base - ang));
}
}
//三角形外接圆
Circle CircumscribedCircle(Point p1, Point p2, Point p3)
{
double Bx = p2.x-p1.x, By = p2.y-p1.y;
double Cx = p3.x-p1.x, Cy = p3.y-p1.y;
double D = 2*(Bx*Cy-By*Cx);
double cx = (Cy*(Bx*Bx+By*By) - By*(Cx*Cx+Cy*Cy))/D + p1.x;
double cy = (Bx*(Cx*Cx+Cy*Cy) - Cx*(Bx*Bx+By*By))/D + p1.y;
Point p = Point(cx, cy);
return Circle(p, Length(p1-p));
}
//三角形内切圆
Circle InscribedCircle(Point p1, Point p2, Point p3)
{
double a = Length(p2-p3);
double b = Length(p3-p1);
double c = Length(p1-p2);
Point p = (p1*a+p2*b+p3*c)/(a+b+c);
return Circle(p, DistanceToLine(p, p1, p2));
}
//所有经过点p 半径为r 且与直线L相切的圆心
vector<Point> CircleThroughPointTangentToLineGivenRadius(Point p, Line L, double r)
{
vector<Point> ans;
double t1, t2;
getLineCircleIntersection(L.move(-r), Circle(p, r), t1, t2, ans);
getLineCircleIntersection(L.move(r), Circle(p, r), t1, t2, ans);
return ans;
}
//半径为r 与a b两直线相切的圆心
vector<Point> CircleTangentToLinesGivenRadius(Line a, Line b, double r)
{
vector<Point> ans;
Line L1 = a.move(-r), L2 = a.move(r);
Line L3 = b.move(-r), L4 = b.move(r);
ans.push_back(GetLineIntersection(L1, L3));
ans.push_back(GetLineIntersection(L1, L4));
ans.push_back(GetLineIntersection(L2, L3));
ans.push_back(GetLineIntersection(L2, L4));
return ans;
}
//与两圆相切 半径为r的所有圆心
vector<Point> CircleTangentToTwoDisjointCirclesWithRadius(Circle c1, Circle c2, double r)
{
vector<Point> ans;
Vector v = c2.c - c1.c;
double dist = Length(v);
int d = dcmp(dist - c1.r -c2.r - r*2);
if(d > 0) return ans;
getCircleCircleIntersection(Circle(c1.c, c1.r+r), Circle(c2.c, c2.r+r), ans);
return ans;
}
//多边形与圆相交面积
Point GetIntersection(Line a, Line b) //线段交点
{
Vector u = a.p-b.p;
double t = Cross(b.v, u) / Cross(a.v, b.v);
return a.p + a.v*t;
}
bool InCircle(Point x, Circle c)
{
return dcmp(c.r - Length(c.c - x)) >= 0;
}
bool OnCircle(Point x, Circle c)
{
return dcmp(c.r - Length(c.c - x)) == 0;
}
//线段与圆的交点
int getSegCircleIntersection(Line L, Circle C, Point* sol)
{
Vector nor = Normal(L.v);
Line pl = Line(C.c, nor);
Point ip = GetIntersection(pl, L);
double dis = Length(ip - C.c);
if (dcmp(dis - C.r) > 0) return 0;
Point dxy = Unit(L.v) * sqrt(sqr(C.r) - sqr(dis));
int ret = 0;
sol[ret] = ip + dxy;
if (OnSegment(sol[ret], L.p, L.point(1))) ret++;
sol[ret] = ip - dxy;
if (OnSegment(sol[ret], L.p, L.point(1))) ret++;
return ret;
}
//线段切割圆
double SegCircleArea(Circle C, Point a, Point b)
{
double a1 = angle(a - C.c);
double a2 = angle(b - C.c);
double da = fabs(a1 - a2);
if (da > PI) da = PI * 2.0 - da;
return dcmp(Cross(b - C.c, a - C.c)) * da * sqr(C.r) / 2.0;
}
//多边形与圆相交面积
double PolyCiclrArea(Circle C, Point *p, int n)
{
double ret = 0.0;
Point sol[2];
p[n] = p[0];
for (int i = 0; i < n; ++i)
{
//double t1, t2;
int cnt = getSegCircleIntersection(Line(p[i], p[i+1]-p[i]), C, sol);
if (cnt == 0)
{
if (!InCircle(p[i], C) || !InCircle(p[i+1], C)) ret += SegCircleArea(C, p[i], p[i+1]);
else ret += Cross(p[i+1] - C.c, p[i] - C.c) / 2.0;
}
if (cnt == 1)
{
if (InCircle(p[i], C) && !InCircle(p[i+1], C)) ret += Cross(sol[0] - C.c, p[i] - C.c) / 2.0, ret += SegCircleArea(C, sol[0], p[i+1]);
else ret += SegCircleArea(C, p[i], sol[0]), ret += Cross(p[i+1] - C.c, sol[0] - C.c) / 2.0;
}
if (cnt == 2)
{
if ((p[i] < p[i + 1]) ^ (sol[0] < sol[1])) swap(sol[0], sol[1]);
ret += SegCircleArea(C, p[i], sol[0]);
ret += Cross(sol[1] - C.c, sol[0] - C.c) / 2.0;
ret += SegCircleArea(C, sol[1], p[i+1]);
}
}
return fabs(ret);
}
int main()
{
//freopen("input.txt", "r", stdin);
return 0;
}
二维计算几何模板整理
最新推荐文章于 2019-08-09 16:23:50 发布