Reasoning With Neural Tensor Networks for Knowledge Base Completion

这篇博客介绍了神经张量网络在处理知识库补全任务中的应用,主要探讨了模型结构、训练目标和损失函数。模型通过计算三元组(e1,R,e2)的置信度来判断实体间的关系。使用tanh激活函数和张量运算增强模型的表达能力。训练目标确保正样本得分高于负样本,并引入L2正则化。作者个人认为,这种网络利用了输入的二次信息,提升了分类能力。" 103577748,8609794,Power BI 动态展示多维度指标,"['数据可视化', 'Power BI 报表', '数据筛选', '商业智能']
摘要由CSDN通过智能技术生成

[ 论文阅读地址 ]

1. 问题描述

输入

  一个三元组: (e1,R,e2) ,例如(Bengal tiger, has part, tail)。

输出

  三元组 (e1,R,e2) 中, e1 e2 有关系 R 的置信度。

2. 模型

输出


论文中关于打分函数的形象图示

打分函数:

g(e1,R,e2)=uTRf(eT1W[1:k]Re2+VR[e1e2]+bR)

其中:

  • uTR 是属于类别R的权值。
  • f 是tanh激活函数,对输入的每个元素单独做tanh激活,即 f:RnRn
  • e1 e2 是输入的实体的向量表示,最初是直接赋随机值,训练时会更新。 e1Rd×1 文章后文中提到了两点改进:
    • 不是每个输入实体对应一个向量,而是每个词语对应一个向量,实体向量由词向量求均值得到(作者提到,他们也采用了RNN进行实体向量的学习,但是由于数据中90%的实体都是由不超过两个词语构成,因而RNN并没有比简单的取平均更好)。同时在网络训练时候,也会对词向量进行更新。
    • 对于词向量,采用已经训练好的词向量去作为初始化值会比随机初始化效果更好。

      原论文中的图片
  • W[1:k]R 为和类别 R 有关的张量, W[1:k]RRd×d×k eT1W[1:k]Re2 可以看成 eT
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值