Anchor-Free系列论文阅读《DenseBox: Unifying Landmark Localization withEnd to End Object Detection》

       论文是百度AI实验室发表于2015年,属于Anchor-Free论文的最早启蒙论文之一,主要目的是将图像分割领域的端到端的FCN网络最大限度应用于目标检测。


创新点:

1. 提出了一种新的基于FCN的对象检测器DenseBox,它不需要生成候选Bounding Box,并且能够在训练期间进行端到端优化,可以非常准确和高效地检测具有严重遮挡的不同尺度(小目标适用)下的目标。

2. 通过多任务学习与关键点检测相结合,进一步提高DenseBox目标检测精度。


方法细节:

1.输入m \times n大小的图像,输出\frac{m}{4} \times \frac{n}{4} \times 5,输出(s,dx_{_{lt}},dy_{_{lt}},dx_{_{rb}},dy_{_{rb}})。其中,s为是目标的置信度矩阵,本文输出矩阵中设置一个正样本区域,该区域为一个圆,半径与bounding box的大小有关,其比例因子设置为输出坐标空间中框大小的0.3,ground truth如果在正标签区域内为1,否则为0, 如图所示;其他四个值为像素距离最近的groud truth的左上和右下的距离。

2.如果一幅图中出现多个人脸,将落在图中心比例范围内的人脸视为正值(范围为0.8到1.25)。

3.模型设计如图所示(本篇文章模型设计的分析,撰写文章可以参照写的很好):

模型利用ImageNet预训练的VGG19初始化前12层(Conv4_4),利用xavier 初始化后四层,损失函数分为两部分,分类损失和位置损失,采用的L2损失。

4.损失函数:


关键点改善: 

1.改善模型设计:


其他:

本文提出了一个观点:YOLO与Faster RCNN针对小尺寸目标可能会损失召回率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值