Anchor-Free系列论文阅读《DenseBox: Unifying Landmark Localization withEnd to End Object Detection》

       论文是百度AI实验室发表于2015年,属于Anchor-Free论文的最早启蒙论文之一,主要目的是将图像分割领域的端到端的FCN网络最大限度应用于目标检测。


创新点:

1. 提出了一种新的基于FCN的对象检测器DenseBox,它不需要生成候选Bounding Box,并且能够在训练期间进行端到端优化,可以非常准确和高效地检测具有严重遮挡的不同尺度(小目标适用)下的目标。

2. 通过多任务学习与关键点检测相结合,进一步提高DenseBox目标检测精度。


方法细节:

1.输入m \times n大小的图像,输出\frac{m}{4} \times \frac{n}{4} \times 5,输出(s,dx_{_{lt}},dy_{_{lt}},dx_{_{rb}},dy_{_{rb}})。其中,s为是目标的置信度矩阵,本文输出矩阵中设置一个正样本区域,该区域为一个圆,半径与bounding box的大小有关,其比例因子设置为输出坐标空间中框大小的0.3,ground truth如果在正标签区域内为1,否则为0, 如图所示;其他四个值为像素距离最近的groud truth的左上和右下的距离。

2.如果一幅图中出现多个人脸,将落在图中心比例范围内的人脸视为正值(范围为0.8到1.25)。

3.模型设计如图所示(本篇文章模型设计的分析,撰写文章可以参照写的很好):

模型利用ImageNet预训练的VGG19初始化前12层(Conv4_4),利用xavier 初始化后四层,损失函数分为两部分,分类损失和位置损失,采用的L2损失。

4.损失函数:


关键点改善: 

1.改善模型设计:


其他:

本文提出了一个观点:YOLO与Faster RCNN针对小尺寸目标可能会损失召回率。

### Anchor-Free YOLOv8 Object Detection Model Implementation and Performance In the evolution of object detection models, moving from anchor-based to anchor-free methods has been a significant advancement. Traditional deep learning-based object detectors required complex post-processing steps such as designing anchor sets and heuristic methods for assigning bounding boxes to anchors[^3]. However, with advancements like those described in Generalized Focal Loss (GFL), which addresses issues related to dense object detection by improving box quality estimation[^1], newer versions of popular architectures have adopted more streamlined approaches. #### Transitioning to Anchor-Free Models The transition towards anchor-free designs simplifies the architecture while potentially enhancing efficiency and accuracy. For instance, unifying tasks into single-stage solutions can integrate both detection and re-identification within one framework without requiring additional prior knowledge or separate stages for processing each task individually[^2]. #### Specifics on Anchor-Free YOLOv8 For the specific case of YOLOv8 being implemented in an anchor-free fashion: - **Architecture Modifications**: The removal of predefined anchor templates allows direct prediction of objects' locations relative to feature map positions rather than relying on pre-defined shapes. - **Loss Function Adaptation**: Utilizing loss functions that better suit this paradigm shift is crucial; GFL offers improvements over traditional focal losses used previously in earlier iterations of YOLO series models. - **Performance Enhancements**: By eliminating dependencies on manually crafted priors, these modifications aim at achieving higher precision alongside faster inference times due to reduced computational overhead associated with managing multiple scales via anchors. ```python import torch.nn.functional as F def compute_gfl_loss(pred_boxes, target_boxes): # Compute generalized IoU between predicted and true boxes giou = bbox_overlaps(pred_boxes, target_boxes, mode='giou') # Calculate regression loss using smooth L1 combined with GIoU reg_loss = F.smooth_l1_loss(pred_boxes, target_boxes) - giou.mean() return reg_loss ``` This code snippet demonstrates how a custom function might implement part of the training pipeline focusing specifically on computing the generalized focal loss during backpropagation when optimizing parameters for detecting objects accurately across various sizes and aspect ratios found naturally occurring datasets.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值