链接:http://acm.sgu.ru/problem.php?contest=0&problem=326
题意:有n个球队,都是一个小组的,现在给出这n个对获胜的场次,还有剩下要比的场次(小组内,或者与其他小组),再给出一个矩阵,表示小组内的第i队要和第j队比的场次。问能否安排比赛让1队可能赢得比赛。
分析:因为题意是要让1队可能赢得比赛,那么我们就先贪心让1队参与的比赛全赢(包括与其他小组),其他队减去相应的场次。然后去判断其他小组内的队伍之间能否比完所有的场次,且赢的场次没有1队多,与其他小组之间的我们就可以不考虑(以贪心的策略就是让除下1队的队伍与其他小组比赛全输)。
小组内的比赛一定是有赢有输的,赢的场次加上输的场次/2就是他们比赛的场次,这种要判断结果是否可达,可以用网络流来判断是否满流,建立超级源汇是s,t;s连向除下1的所有队伍,流量为队伍赢的次数不超过队1赢得场次,addedge(S,I,A[1]-B[I]);每场比赛(i->j)间连i和j要比的场次addedge(i,i->j,g[i][j]),addedge(j,i->j,g[i][j]),最后连场次限制addedge(i->j,t,g[i][j]),最后判断maxflow==sigma(g[i][j])
代码:
#include<algorithm>
#include<iostream>
#include<cstring>
#include<cstdio>
#include<string>
#include<vector>
#include<queue>
#include<cmath>
#include<stack>
#include<set>
#include<map>
#define INF 0x3f3f3f3f
#define Mn 500
#define Mm 20005
#define mod 1000000007
#define CLR(a,b) memset((a),(b),sizeof((a)))
#define CLRS(a,b,Size) memset((a),(b),sizeof((a[0]))*(Size+1))
#define CPY(a,b) memcpy ((a), (b), sizeof((a)))
#pragma comment(linker, "/STACK:102400000,102400000")
#define ul u<<1
#define ur (u<<1)|1
using namespace std;
typedef long long ll;
struct edge {
int v,w,next;
} e[Mm];
int deep[Mn];
int head[Mn];
int cur[Mn];
int N,tot;
void addedge(int u,int v,int w) {
e[tot].v=v;
e[tot].w=w;
e[tot].next=head[u];
head[u]=tot++;
}
queue<int> q;
bool bfs(int st,int en) {
while(!q.empty()) q.pop();
CLR(deep,-1);
q.push(st);
deep[st]=0;
while(!q.empty()) {
int u=q.front();
q.pop();
if(u==en) return true;
for(int i=head[u]; i!=-1; i=e[i].next) {
int v=e[i].v;
int w=e[i].w;
if(w>0&&deep[v]==-1) {
deep[v]=deep[u]+1;
q.push(v);
}
}
}
return false;
}
int dfs(int u,int sum,int en) {
if(u==en) return sum;
int a=0,us=0;
for(int &i=cur[u]; i!=-1; i=e[i].next) {
if(deep[e[i].v]==deep[u]+1) {
a=sum-us;
a=dfs(e[i].v,min(a,e[i].w),en);
e[i].w-=a;
e[i^1].w+=a;
if(e[i].w) cur[u]=i;
us+=a;
if(us==sum) return sum;
}
}
if(!us) deep[u]=-1;
return us;
}
int dinic(int st,int en) {
int ans=0;
while(bfs(st,en)) {
CPY(cur,head);
ans+=dfs(st,INF,en);
}
return ans;
}
void init() {
tot=0;
CLR(head,-1);
}
int a[Mn],b[Mn];
int g[Mn][Mn];
int main() {
int n;
init();
scanf("%d",&n);
for(int i=1;i<=n;i++) scanf("%d",&a[i]);
for(int i=1;i<=n;i++) scanf("%d",&b[i]);
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
scanf("%d",&g[i][j]);
for(int j=2;j<=n;j++) {
if(g[1][j]) {
a[1]+=g[1][j];
b[1]-=g[1][j];
b[j]-=g[1][j];
g[j][1]=g[1][j]=0;
}
}
a[1]+=b[1],b[1]=0;
int s=0,t=n*(n-1)/2+n+1;
int sum=0;
for(int i=2;i<=n;i++) {
if(a[i]>a[1]) {
printf("NO\n");
return 0;
}
addedge(s,i,a[1]-a[i]);
addedge(i,s,0);
}
int cnt=n;
for(int i=2;i<=n;i++) {
for(int j=i+1;j<=n;j++) {
if(g[i][j]) {
cnt++;
sum+=g[i][j];
addedge(i,cnt,g[i][j]);
addedge(cnt,i,0);
addedge(j,cnt,g[i][j]);
addedge(cnt,j,0);
addedge(cnt,t,g[i][j]);
addedge(t,cnt,0);
}
}
}
if(sum==dinic(s,t)) printf("YES\n");
else printf("NO\n");
return 0;
}