1.HDFS概述
1.1HDFS产生背景及定义
1.1.1产生背景
随着数据量越来越大,在一个操作系统存不下所有的数据,那么就分配到更多的操作系统管理的磁盘中,但是不方便管理和维护,迫切需要一种系统来管理多台机器上的文件,这就是分布式文件管理系统。HDFS只是分布式文件系统中的一种
1.1.2定义
HDFS(Hadoop Distributed File System) 是一个文件系统,用于存储文件,通过目录树来定位文件;其次,它是分布式的,有很多服务器联合起来实现其功能,集群中服务器有各自的角色
HDFS适合一次写入,多次读取的场景,且不支持文件的修改。适合用来做数据分析,并不适合来做网盘应用
1.2HDFS优缺点
1.2.1优点
➢ 高容错性
- 数据自动保存多个副本,它通过增加副本的形式,提高容错性
- 某一个副本丢失后,它可以自动修复
➢ 适合处理大数据
- 数据规模:能够处理数据规模达到EB(35个集群,11w+服务器,数据量5.2+ EB,线上数据表1.6kw+,线上任务1.2kw+级别)
- 文件规模:能够处理百万规模以上的文件数量,数据量相对大
➢ 可建构在廉价的机器上,通过多副本机制,提高可靠性
1.2.2缺点
➢ 不适合低延时数据访问,比如毫秒级的存储数据,是做不到的
➢ 无法高效对大量小文件进行存储
- 存储大量小文件的话,它会占用NameNode大量的内存来存储文件目录和块信息。这样是不可取的,因为NameNode的内存总是有限的
- 小文件存储的寻址时间会超过读取时间,它违反了HDFS的设计目标
➢ 不支持并发写入,文件随机修改
- 一个文件只能有一个写,不允许多个线程同时写
- 仅支持追加append(追加),不支持文件的随机修改
1.3HDFS组成架构
1.3.1NameNode(NN)
就是Master,它是一个主管、管理者
- 管理HDFS的名称空间
- 配置副本策略
- 管理数据块(block)映射信息
- 处理客户端读写请求
1.3.2DataNode
- 存储实际的数据块
- 执行数据块的读/写操作
1.3.3Client
文件切分。文件上传HDFS的时候,Client将文件切分成一个一个的Block,然后上传
- 与NameNode交互,获取文件的存储信息
- 与DataNode交互,读取或者写入数据
- Client提供一些命令来管理HDFS,比如NameNode格式化
- Client可以通过一些命令来访问HDFS,比如对HDFS的增删改查操作
1.3.4Secondary NameNode(2NN)
并非NameNode的热备份。当NameNode挂掉的时候,它并不能马上替换NameNode并提供服务
- 辅助NameNode,分担其工作量,比如定期合并Fsimage和Edits,并推送给NamenNode
- 在紧急情况下,可以辅助恢复NameNode
1.4 HDFS文件块大小
HDFS在物理上是分块存储的(Block),块大小可以通过参数(dfs.blocksize)进行配置,默认大小为128M(2.x版本),老版本为64M
- 如果寻址时间约为10ms,即查到目标block的时间为10ms
- 寻址时间为传输时间的1%时,则为最佳状态。因此,传输时间为=10ms/0.1=1000ms=1s为最佳
- 目前磁盘的传输效率普遍为100m/s
➢ 思考:为什么块的大小不能设置太小?
- HDFS块设置太小,会增加寻址时间,程序一直在找块的开始位置
- 如果块设置的太大,从磁盘传输数据的时间会明显大于定位这个块开始位置需要的时间。导致程序在处理这块数据时,会非常慢
总结:HDFS块的大小设置主要取决于磁盘传输速率
2.HDFS的Shell操作
2.1基本语法
bin/hadoop fs 具体命令 or bin/hdfs dfs 具体命令
dfs是fs的实现类
2.2常用命令
## (0)启动Hadoop集群(方便后续的测试)
sbin/start-dfs.sh
sbin/start-yarn.sh
## (1)-help:输出这个命令参数
hadoop fs -help rm
## (2)-ls: 显示目录信息
hadoop fs -ls /
## (3)-mkdir:在HDFS上创建目录
hadoop fs -mkdir -p /sanguo/shuguo
## (4)-moveFromLocal:从本地剪切粘贴到HDFS
touch kongming.txt
hadoop fs -moveFromLocal ./kongming.txt /sanguo/shuguo
## (5)-appendToFile:追加一个文件到已经存在的文件末尾
touch liubei.txt
vi liubei.txt
hadoop fs -appendToFile liubei.txt /sanguo/shuguo/kongming.txt
## (6)-cat:显示文件内容
hadoop fs -cat /sanguo/shuguo/kongming.txt
## (7)-chgrp 、-chmod、-chown:Linux文件系统中的用法一样,修改文件所属权限
hadoop fs -chmod 666 /sanguo/shuguo/kongming.txt
hadoop fs -chown feifeiliu:feifeiliu /sanguo/shuguo/kongming.txt
## (8)-copyFromLocal:从本地文件系统中拷贝文件到HDFS路径去
hadoop fs -copyFromLocal README.txt /
## (9)-copyToLocal:从HDFS拷贝到本地
hadoop fs -copyToLocal /sanguo/shuguo/kongming.txt ./
## (10)-cp :从HDFS的一个路径拷贝到HDFS的另一个路径
hadoop fs -cp /sanguo/shuguo/kongming.txt /zhuge.txt
## (11)-mv:在HDFS目录中移动文件
hadoop fs -mv /zhuge.txt /sanguo/shuguo/
## (12)-get:等同于copyToLocal,就是从HDFS下载文件到本地
hadoop fs -get /sanguo/shuguo/kongming.txt ./
## (13)-getmerge:合并下载多个文件,比如HDFS的目录 /user/feifeiliu/test下有多个文件:log.1, log.2,log.3,...
hadoop fs -getmerge /user/feifeiliu/test/* ./zaiyiqi.txt
## (14)-put:等同于copyFromLocal
hadoop fs -put ./zaiyiqi.txt /user/feifeiliu/test/
## (15)-tail:显示一个文件的末尾
hadoop fs -tail /sanguo/shuguo/kongming.txt
## (16)-rm:删除文件或文件夹 -f 强制删除非空文件,-r 递归删除 -skipTrash 不放入回收站
hadoop fs -rm -r -f -skipTrash /user/feifeiliu/test/jinlian2.txt
## (17)-rmdir:删除空目录
hadoop fs -mkdir /test
hadoop fs -rmdir /test
## (18)-du统计文件夹的大小信息 -s -h 个人记忆方法 -du(disk used) -h(human) -s(summary)
hadoop fs -du -s -h /user/feifeiliu/test
2.7 K /user/feifeiliu/test
hadoop fs -du -h /user/feifeiliu/test
1.3 K /user/feifeiliu/test/README.txt
15 /user/feifeiliu/test/jinlian.txt
1.4 K /user/feifeiliu/test/zaiyiqi.txt
## (19)-setrep:设置HDFS中文件的副本数量
hadoop fs -setrep 10 /sanguo/shuguo/kongming.txt
可以参考 https://www.cnblogs.com/kimbo/p/6212732.html
3.HDFS的API操作
3.1HDFS的API操作
3.2HDFS的I/O流操作
4.HDFS数据流
4.1 HDFS写数据流程
4.1.1 剖析文件写入
写数据流程
- 客户端通过Distributed FileSystem模块向NameNode请求上传文件,NameNode检查目标文件是否已存在,父目录是否存在
- NameNode返回是否可以上传
- 客户端请求第一个 Block上传到哪几个DataNode服务器上
- NameNode返回3个DataNode节点,分别为dn1、dn2、dn3
- 客户端通过FSDataOutputStream模块请求dn1上传数据,dn1收到请求会继续调用dn2,然后dn2调用dn3,将这个通信管道建立完成
- dn1、dn2、dn3逐级应答客户端
- 客户端开始往dn1上传第一个Block(先从磁盘读取数据放到一个本地内存缓存),以Packet为单位,dn1收到一个Packet就会传给dn2,dn2传给dn3;dn1每传一个packet会放入一个应答队列等待应答。
- 当一个Block传输完成之后,客户端再次请求NameNode上传第二个Block的服务器。(重复执行3-7步)
直到所有副本都写完了,才算数据成功写入到HDFS上,副本写入采用的是串行,每个副本写的过程中都会逐级向上反馈写进度,以保证实时知道副本的写入情况
4.1.2 网络拓扑-节点距离计算
在HDFS写数据的过程中,NameNode会选择距离待上传数据最近距离的DataNode接收数据。那么这个最近距离怎么计算呢?
节点距离:两个节点到达最近的共同祖先的距离总和
4.1.3 机架感知(副本存储节点选择)
4.2 HDFS读数据流程
读数据流程
- 客户端通过Distributed FileSystem向NameNode请求下载文件,NameNode通过查询元数据,找到文件块所在的DataNode地址
- 挑选一台DataNode(就近原则,然后随机)服务器,请求读取数据
- DataNode开始传输数据给客户端(从磁盘里面读取数据输入流,以Packet为单位来做校验)
- 客户端以Packet为单位接收,先在本地缓存,然后写入目标文件
5.NameNode和SecondaryNameNode
5.1NN和2NN工作机制
思考:NameNode中的元数据是存储在哪里的?
首先,我们做个假设,如果存储在NameNode节点的磁盘中,因为经常需要进行随机访问,还有响应客户请求,必然是效率过低。因此,元数据需要存放在内存中。但如果只存在内存中,一旦断电,元数据丢失,整个集群就无法工作了。因此产生在磁盘中备份元数据的FsImage。
这样又会带来新的问题,当在内存中的元数据更新时,如果同时更新FsImage,就会导致效率过低,但如果不更新,就会发生一致性问题,一旦NameNode节点断电,就会产生数据丢失。因此,引入Edits文件(只进行追加操作,效率很高)。每当元数据有更新或者添加元数据时,修改内存中的元数据并追加到Edits中。这样,一旦NameNode节点断电,可以通过FsImage和Edits的合并,合成元数据。
但是,如果长时间添加数据到Edits中,会导致该文件数据过大,效率降低,而且一旦断电,恢复元数据需要的时间过长。因此,需要定期进行FsImage和Edits的合并,如果这个操作由NameNode节点完成,又会效率过低。因此,引入一个新的节点SecondaryNamenode,专门用于FsImage和Edits的合并
1. 第一阶段:NameNode启动
- 第一次启动NameNode格式化后,创建Fsimage和Edits文件。如果不是第一次启动,直接加载编辑日志和镜像文件到内存
- 客户端对元数据进行增删改的请求
- NameNode记录操作日志,更新滚动日志
- NameNode在内存中对数据进行增删改
2. 第二阶段:Secondary NameNode工作
- Secondary NameNode询问NameNode是否需要CheckPoint。直接带回NameNode是否检查结果
- Secondary NameNode请求执行CheckPoint
- NameNode滚动正在写的Edits日志
- 将滚动前的编辑日志和镜像文件拷贝到Secondary NameNode
- Secondary NameNode加载编辑日志和镜像文件到内存,并合并
- 生成新的镜像文件fsimage.chkpoint
- 拷贝fsimage.chkpoint到NameNode
- NameNode将fsimage.chkpoint重新命名成fsimage
个人理解:原理和Hbase很类似,写入时候采用追加的方式快速写入,然后定期对已有文件进行合并
5.2Fsimage和Edits
5.2.1文件位置
在core-site中通过dfs.name.dir参数指定name文件位置
<!-- 指定name路径 -->
<property>
<name>dfs.name.dir</name>
<value>/usr/local/hadoop-2.9.2/name</value>
</property>
因此笔者文件路径为:/usr/local/hadoop-2.9.2/name/current
5.2.2概念
namenode被格式化后,将在/usr/local/hadoop-2.9.2/name/current目录下产生fsimage_0000000000000000000、fsimage_0000000000000000000.md5、VERSION、seen_txid等四个文件
- fsimage文件:HDFS文件系统元数据的一个永久性检查点,其中包含HDFS系统的所有目录和文件inode的序列化信息
- edits文件:存放HDFS文件系统所有更新操作的路径,文件系统客户端执行的所有写操作首先会被记录到该文件中
- seen_txid文件:保存的是一个数值,就是最后一个edits_的数字
- 每次namenode启动的时候都会将fsimage文件读入内存,加载edits里面的更新操作,保证内存中的数据时最新的、同步的,可以看成namenode启动的时候就将fsimage和edits文件进行了合并
5.3 CheckPoint时间设置
(1)通常情况下,SecondaryNameNode每隔一小时执行一次
<!-- [hdfs-default.xml] -->
<property>
<name>dfs.namenode.checkpoint.period</name>
<value>3600</value>
</property>
(2)一分钟检查一次操作次数,当操作次数达到1百万时,SecondaryNameNode执行一次
<property>
<name>dfs.namenode.checkpoint.txns</name>
<value>1000000</value>
<description>操作动作次数</description>
</property>
<property>
<name>dfs.namenode.checkpoint.check.period</name>
<value>60</value>
<description> 1分钟检查一次操作次数</description>
</property >
5.4 NameNode故障处理
NameNode故障后,可以采用如下两种方法恢复数据:
将SecondaryNameNode中数据拷贝到NameNode存储数据的目录
- kill -9 NameNode进程
- 删除NameNode存储的数据(/opt/module/hadoop-2.7.2/data/tmp/dfs/name)
- 拷贝SecondaryNameNode中数据到原NameNode存储数据目录
- 重新启动NameNode
使用-importCheckpoint选项启动NameNode守护进程,从而将SecondaryNameNode中数据拷贝到NameNode目录中
- 修改hdfs-site.xml中的
- kill -9 NameNode进程
- 删除NameNode存储的数据(/opt/module/hadoop-2.7.2/data/tmp/dfs/name)
- 如果SecondaryNameNode不和NameNode在一个主机节点上,需要将SecondaryNameNode存储数据的目录拷贝到NameNode存储数据的平级目录,并删除in_use.lock文件
- 导入检查点数据(等待一会ctrl+c结束掉)
- 启动NameNode
5.5集群安全模式
5.5.1NameNode启动
NameNode启动时,首先将将镜像文件(Fsimage)载入内存,并执行编辑日志(Edits)中的各项操作,一旦在内存中成功建立文件系统元数据的镜像,则创建一个新的Fsimage文件和一个空的编辑文件。此时NameNode开始监听DataNode请求。这个过程期间,NameNode一直运行在安全模式,即NameNode的文件系统对客户端来说是只读的
5.5.2datanode启动
系统中的数据块位置并不是由NameNode维护,而是以块列表的形式存储在DataNode中。在系统的正常操作期间,NameNode会在内存中保留所有块位置的映射信息。在安全模式下,各个DataNode会向NameNode发送最新的块列表信息,NameNode了解到最够多的位置信息后,即可高效运行文件系统
5.5.3安全模式退出判断
如果满足”最小副本条件“,NameNode会在30s之后就退出安全模式。所谓的最小副本条件指在整个文件系统中99.9%的块满足最小副本级别(默认:dfs.replicaion.min=1)。在启动一个刚刚格式化的HDFS集群时,因为系统中有任务块,所以NameNode不会进入安全模式
5.6 NameNode多目录配置
1.NameNode的本地目录可以配置成多个,且每个目录存放内容相同,增加了可靠性
2.具体配置如下
<property>
<name>dfs.namenode.name.dir</name>
<value>file:///${hadoop.tmp.dir}/dfs/name1,file:///${hadoop.tmp.dir}/dfs/name2</value>
6.DataNode
6.1 DataNode工作机制
-
一个数据块在DataNode上以文件形式存储在磁盘上,包括两个文件,一个是数据本身,一个是元数据包括数据块的长度,块数据的校验和,以及时间戳。
-
DataNode启动后向NameNode注册,通过后,周期性(1小时)的向NameNode上报所有的块信息。
-
跳是每3秒一次,心跳返回结果带有NameNode给该DataNode的命令如复制块数据到另一台机器,或删除某个数据块。如果超过10分钟没有收到某个DataNode的心跳,则认为该节点不可用
-
集群运行中可以安全加入和退出一些机器
6.2 数据完整性
-
当DataNode读取Block的时候,它会计算CheckSum
-
如果计算后的CheckSum,与Block创建时值不一样,说明Block已经损坏
-
Client读取其他DataNode上的Block
-
DataNode在其文件创建后周期验证CheckSum
6.3 掉线时限参数设置
- DataNode进程死亡或者网络故障造成DataNode无法与NameNode通信
- NameNode不会立刻把该节点判定为死亡,要经过一段时间,这段时间成为超时时长
- HDFS默认超时时长为10分钟+30秒
- 如果超时时长Timeout,则超时时长计算公式为:Timeout=2*dfs.namenode.heartbeat.recheck.interval+10*dfs.heartbeat.interval。而默认的dfs.namenode.heartbeat.recheck.interval大小为5分钟,dfs.heartbeat.interval默认为三秒
需要注意的是hdfs-site.xml 配置文件中的heartbeat.recheck.interval的单位为毫秒,dfs.heartbeat.interval的单位为秒
<property>
<name>dfs.namenode.heartbeat.recheck-interval</name>
<value>300000</value>
</property>
<property>
<name>dfs.heartbeat.interval</name>
<value>3</value>
</property>
6.4 服役新数据节点
略
6.5 退役旧数据节点
6.5.1 添加白名单
添加到白名单的主机节点,都允许访问NameNode,不在白名单的主机节点,都会被退出
在NameNode的`$HADOOP_HOME`/etc/hadoop目录下创建dfs.hosts文件,添加主机。并在在NameNode的hdfs-site.xml配置文件中增加dfs.hosts属性,然后分发hdfs-site.xml文件
<property>
<name>dfs.hosts</name>
<value>/usr/local/hadoop-2.9.2/etc/hadoop/dfs.hosts</value>
</property>
6.5.2 黑名单退役
在黑名单上面的主机都会被强制退出
在NameNode的`$HADOOP_HOME`/etc/hadoop目录下创建dfs.hosts.exclude文件。并在在NameNode的hdfs-site.xml配置文件中增加dfs.hosts.exclude属性,同时
6.6 Datanode多目录配置
1. DataNode也可以配置成多个目录,每个目录存储的数据不一样。即:数据不是副本
2.具体配置如下hdfs-site.xml
<property>
<name>dfs.datanode.data.dir</name>
<value>file:///${hadoop.tmp.dir}/dfs/data1,file:///${hadoop.tmp.dir}/dfs/data2</value>
</property>
7.HDFS 2.X新特性
7.1 集群间数据拷贝
7.2 小文件存档
7.3 回收站
7.4 快照管理
8.HDFS的HA
8.1 HA概述
1)所谓HA(High Available),即高可用(7*24小时不中断服务)。
2)实现高可用最关键的策略是消除单点故障。HA严格来说应该分成各个组件的HA机制:HDFS的HA和YARN的HA。
3)Hadoop2.0之前,在HDFS集群中NameNode存在单点故障(SPOF)。
4)NameNode主要在以下两个方面影响HDFS集群
NameNode机器发生意外,如宕机,集群将无法使用,直到管理员重启
NameNode机器需要升级,包括软件、硬件升级,此时集群也将无法使用
HDFS HA功能通过配置Active/Standby两个NameNodes实现在集群中对NameNode的热备来解决上述问题。如果出现故障,如机器崩溃或机器需要升级维护,这时可通过此种方式将NameNode很快的切换到另外一台机器
8.2 HDFS-HA工作机制
通过双NameNode消除单点故障
8.2.1 HDFS-HA工作要点
➢ 元数据管理方式需要改变
- 内存中各自保存一份元数据
- Edits日志只有Active状态的NameNode节点可以做写操作
- 两个NameNode都可以读取Edits
- 共享的Edits放在一个共享存储中管理(qjournal和NFS两个主流实现)
➢ 需要一个状态管理功能模块
实现了一个zkfailover,常驻在每一个namenode所在的节点,每一个zkfailover负责监控自己所在NameNode节点,利用zk进行状态标识,当需要进行状态切换时,由zkfailover来负责切换,切换时需要防止brain split现象的发生
➢ 必须保证两个NameNode之间能够ssh无密码登录
➢ 隔离(Fence),即同一时刻仅仅有一个NameNode对外提供服务
8.2.2 HDFS-HA自动故障转移工作机制
前面使用命令hdfs haadmin -failover手动进行故障转移,在该模式下,即使现役NameNode已经失效,系统也不会自动从现役NameNode转移到待机NameNode
下面配置部署HA自动进行故障转移。自动故障转移为HDFS部署增加了两个新组件:ZooKeeper和ZKFailoverController(ZKFC)进程,如图3-20所示。ZooKeeper是维护少量协调数据,通知客户端这些数据的改变和监视客户端故障的高可用服务。HA的自动故障转移依赖于ZooKeeper的以下功能:
1)故障检测:集群中的每个NameNode在ZooKeeper中维护了一个持久会话,如果机器崩溃,ZooKeeper中的会话将终止,ZooKeeper通知另一个NameNode需要触发故障转移。
2)现役NameNode选择:ZooKeeper提供了一个简单的机制用于唯一的选择一个节点为active状态。如果目前现役NameNode崩溃,另一个节点可能从ZooKeeper获得特殊的排外锁以表明它应该成为现役NameNode。
ZKFC是自动故障转移中的另一个新组件,是ZooKeeper的客户端,也监视和管理NameNode的状态。每个运行NameNode的主机也运行了一个ZKFC进程,ZKFC负责:
1)健康监测:ZKFC使用一个健康检查命令定期地ping与之在相同主机的NameNode,只要该NameNode及时地回复健康状态,ZKFC认为该节点是健康的。如果该节点崩溃,冻结或进入不健康状态,健康监测器标识该节点为非健康的。
2)ZooKeeper会话管理:当本地NameNode是健康的,ZKFC保持一个在ZooKeeper中打开的会话。如果本地NameNode处于active状态,ZKFC也保持一个特殊的znode锁,该锁使用了ZooKeeper对短暂节点的支持,如果会话终止,锁节点将自动删除。
3)基于ZooKeeper的选择:如果本地NameNode是健康的,且ZKFC发现没有其它的节点当前持有znode锁,它将为自己获取该锁。如果成功,则它已经赢得了选择,并负责运行故障转移进程以使它的本地NameNode为Active。故障转移进程与前面描述的手动故障转移相似,首先如果必要保护之前的现役NameNode,然后本地NameNode转换为Active状态。
8.3 HDFS-HA集群配置
你可以参考 HDFSHighAvailabilityWithQJM HDFSHighAvailabilityWithNFS