Appleman has a tree with n vertices. Some of the vertices (at least one) are colored black and other vertices are colored white.
Consider a set consisting of k (0 ≤ k < n) edges of Appleman's tree. If Appleman deletes these edges from the tree, then it will split into (k + 1) parts. Note, that each part will be a tree with colored vertices.
Now Appleman wonders, what is the number of sets splitting the tree in such a way that each resulting part will have exactly one black vertex? Find this number modulo 1000000007 (109 + 7).
The first line contains an integer n (2 ≤ n ≤ 105) — the number of tree vertices.
The second line contains the description of the tree: n - 1 integers p0, p1, ..., pn - 2 (0 ≤ pi ≤ i). Where pi means that there is an edge connecting vertex (i + 1) of the tree and vertex pi. Consider tree vertices are numbered from 0 to n - 1.
The third line contains the description of the colors of the vertices: n integers x0, x1, ..., xn - 1 (xi is either 0 or 1). If xi is equal to 1, vertex i is colored black. Otherwise, vertex i is colored white.
Output a single integer — the number of ways to split the tree modulo 1000000007 (109 + 7).
3 0 0 0 1 1
2
6 0 1 1 0 4 1 1 0 0 1 0
1
10 0 1 2 1 4 4 4 0 8 0 0 0 1 0 1 1 0 0 1
27 题意: 给一个树,节点只有黑色或者白色,求砍任意条边,把树分割成若干的只有一个黑色节点的小树 的方案数; 思路: 树状DP; 一条边<v,u> 有四种状态: <1,1>, <1, 0> ,<0,1>, <0,0> 用dp[i][0] 代表含节点i的子树不含黑色点的方案数; dp[i][1] : 含节点i的子数含了一个黑色节点的方案数; 假设v 的父节点, u 为其一子节点; dp[v][1] = dp[v][1] (含黑色节点) * dp[u][1] (子含黑色节点) + dp[v][1] * dp[u][0] 【保留<v,u>边, 把v所在含黑色的子树 与 u所在不含黑色的子树连接起来构成新的子树可能数有: dp[v][1] * dp[u][0]】