学习:
从整体上评价深度学习工具
1. caffe
(1)caffe只是实现了前馈卷积神经网络结构(CNN),导致其不能很好支持递归神经网络等其它网络结构支持。
(2)caffe用C++/CUDA/Python实现卷积神经网络框架,提供命令行、matlab和Python的接口。
(3)caffe功能完整,社区论坛活跃,适合深度学习初学者上手学习。
2. Torch
(1)Torch在2000年出现第一个版本,目前有Torch1、Torch3、Torch5和Torch7,它是一个支持大部分机器学习算法的科学框架,它同时兼备灵活性和速度优势。
(2)Torch使用轻量脚本语言Lua及其C/CUDA扩展模块实现,很容易接入第三方软件,它不仅支持CPU/GPU运行,也支持嵌入式设备如iOS、Android和FPGA。
(3)Torch使用广泛,Facebook AI实验室和Googl DeepMind Torch都使用此框架进行深度学习研究。
3.其它平台
(1)TensorFlow,Google推出的新一代人工智能学习系统。
(2)Theano,基于Python的深度学习框架,适合研究人员使用,不适合线上线下部署。
(3)CNTK(Computational Network Toolkit),微软推出的深度学习框架,对Windows平台支持最好。
疑惑:
1. Lua为轻量脚本语言,什么意思?
2. 初定的计划为,用caffe搞清楚深度学习框架,然后学习Torch。