max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似
关于池化的概念,可以参考我的这篇文章:https://blog.csdn.net/u012495579/article/details/90343636
tf.nn.max_pool(value, ksize, strides, padding, name=None)
一共有四个参数,和卷积很类似:
- value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape。
- ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1。
- strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]。
- padding:和卷积类似,可以取’VALID’ 或者’SAME’。
返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式。
示例
假设有这样一张图,双通道
第一个通道:
第二个通道:
用程序去做最大值池化:
import tensorflow as tf
a=tf.constant([
[[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0],
[8.0,7.0,6.0,5.0],
[4.0,3.0,2.0,1.0]],
[[4.0,3.0,2.0,1.0],
[8.0,7.0,6.0,5.0],
[1.0,2.0,3.0,4.0],
[5.0,6.0,7.0,8.0]]
])
a=tf.reshape(a,[1,4,4,2])
pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')
with tf.Session() as sess:
print("image:")
image=sess.run(a)
print (image)
print("reslut:")
result=sess.run(pooling)
print (result)
这里步长为1,窗口大小2×2,输出结果:
image:
[[[[ 1. 2.]
[ 3. 4.]
[ 5. 6.]
[ 7. 8.]]
[[ 8. 7.]
[ 6. 5.]
[ 4. 3.]
[ 2. 1.]]
[[ 4. 3.]
[ 2. 1.]
[ 8. 7.]
[ 6. 5.]]
[[ 1. 2.]
[ 3. 4.]
[ 5. 6.]
[ 7. 8.]]]]
reslut:
[[[[ 8. 7.]
[ 6. 6.]
[ 7. 8.]]
[[ 8. 7.]
[ 8. 7.]
[ 8. 7.]]
[[ 4. 4.]
[ 8. 7.]
[ 8. 8.]]]]
池化后的图就是:
原文:https://blog.csdn.net/mao_xiao_feng/article/details/53453926