tf.nn.max_pool

max pooling是CNN当中的最大值池化操作,其实用法和卷积很类似
关于池化的概念,可以参考我的这篇文章:https://blog.csdn.net/u012495579/article/details/90343636

tf.nn.max_pool(value, ksize, strides, padding, name=None)

一共有四个参数,和卷积很类似:

  • value:需要池化的输入,一般池化层接在卷积层后面,所以输入通常是feature map,依然是[batch, height, width, channels]这样的shape。
  • ksize:池化窗口的大小,取一个四维向量,一般是[1, height, width, 1],因为我们不想在batch和channels上做池化,所以这两个维度设为了1。
  • strides:和卷积类似,窗口在每一个维度上滑动的步长,一般也是[1, stride,stride, 1]。
  • padding:和卷积类似,可以取’VALID’ 或者’SAME’。

返回一个Tensor,类型不变,shape仍然是[batch, height, width, channels]这种形式。

示例

假设有这样一张图,双通道

第一个通道:
在这里插入图片描述
第二个通道:
在这里插入图片描述
用程序去做最大值池化:

import tensorflow as tf
 
a=tf.constant([
        [[1.0,2.0,3.0,4.0],
        [5.0,6.0,7.0,8.0],
        [8.0,7.0,6.0,5.0],
        [4.0,3.0,2.0,1.0]],
        [[4.0,3.0,2.0,1.0],
         [8.0,7.0,6.0,5.0],
         [1.0,2.0,3.0,4.0],
         [5.0,6.0,7.0,8.0]]
    ])
 
a=tf.reshape(a,[1,4,4,2])
 
pooling=tf.nn.max_pool(a,[1,2,2,1],[1,1,1,1],padding='VALID')
with tf.Session() as sess:
    print("image:")
    image=sess.run(a)
    print (image)
    print("reslut:")
    result=sess.run(pooling)
    print (result)

这里步长为1,窗口大小2×2,输出结果:

image:
[[[[ 1.  2.]
   [ 3.  4.]
   [ 5.  6.]
   [ 7.  8.]]
 
  [[ 8.  7.]
   [ 6.  5.]
   [ 4.  3.]
   [ 2.  1.]]
 
  [[ 4.  3.]
   [ 2.  1.]
   [ 8.  7.]
   [ 6.  5.]]
 
  [[ 1.  2.]
   [ 3.  4.]
   [ 5.  6.]
   [ 7.  8.]]]]
reslut:
[[[[ 8.  7.]
   [ 6.  6.]
   [ 7.  8.]]
 
  [[ 8.  7.]
   [ 8.  7.]
   [ 8.  7.]]
 
  [[ 4.  4.]
   [ 8.  7.]
   [ 8.  8.]]]]

池化后的图就是:
在这里插入图片描述
在这里插入图片描述
原文:https://blog.csdn.net/mao_xiao_feng/article/details/53453926

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值