交叉熵和最大似然估计之间的关系

6 篇文章 2 订阅

在分类的网络模型中,我们常常使用交叉熵作为损失函数,今天来梳理一下这些知识点。

 

1. 交叉熵

交叉熵作为损失函数的实际意义,这里引用这篇博文(https://blog.csdn.net/elite666/article/details/83850786)的一句话:

交叉熵刻画的是实际输出(概率)与期望输出(概率)的距离,也就是交叉熵的值越小,两个概率分布就越接近,即拟合的更好。

 

交叉熵计算公式:

H(p, q ) = -\sum_{j=1}^{K}p(x_j)logq(x_j)

式中 x为一个离散随机变量,p(xj)表示第j类的概率。

 

假设同一随机变量X,我们有两个单独的概率分布P(x)和Q(x),那KL散度是用以描述这两个分布之间的差异。

计算公式:

D_{KL}(P||Q) = E_{x\sim P}[logP(x) - logQ(x)]

 

交叉熵和KL散度的关系:

H(P,Q) = H(P) + D_K_L(P||Q)

当分布P 是已知的,则熵是常量,此时最小化交叉熵等价于最小化KL散度。
 

 

2. 最大似然估计

我们这里先说最大似然估计的计算步骤:

(1)写出似然函数;

(2)对似然函数取对数,并整理;

(3)求导数;

(4)解似然方程。

 

似然函数:

L = \prod_{i=1}^{m}Q(x:\theta )

当我们在计算一个batch的最大似然时有

L = \frac{1}{n}\sum_{i=i}^{n}log\prod_{j=1}^{K}q_j^{p_j} = \frac{1}{n}\sum_{i=1}^{n}log(q_1^{p_1}.q_2^{p_2}... q_K^{p_k}) \\ =\frac{1}{n}\sum_{i=1}^{n}(p_1logq_1+p_2logq_2+...+p_Klogq_K) \\ =\frac{1}{n}\sum_{i=1}^{n}\sum_{j=1}^{K}p_ilog(q_i) \\ =-\frac{1}{n}\sum_{i=1}^{n}H(p, q)

实际上在使用最大似然估计时常取负数,通过上面的式子我们就可以看出,这样我们就发现最大似然和最小化交叉熵是等价的。(因为有一个负号,最小化交叉熵就是最大化似然,模型训练得到的效果是一样的)。

 

 

参考:

https://zhuanlan.zhihu.com/p/37917476

https://www.zhihu.com/question/314706587

https://blog.csdn.net/elite666/article/details/83850786

 

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 2
    评论
极大似然估计和交叉熵之间存在密切的关系。在机器学习中,交叉熵通常被用作损失函数,用于衡量模型输出与真实标签之间的差异。下面我将简要介绍极大似然估计与交叉熵的推导过程。 假设我们有一组观测数据 {x₁, x₂, ..., xₙ},这些数据是独立同分布的样本,我们希望用一个参数化的模型来描述这些数据。假设模型的参数为 θ,我们的目标是找到一个使得观测数据出现的概率最大化的参数值。 使用极大似然估计的思想,我们可以将观测数据出现的概率表示为一个关于参数 θ 的函数 L(θ),即似然函数。我们的目标是最大化似然函数 L(θ)。 在分类问题中,我们常常使用概率分布来描述模型输出的结果,比如使用 softmax 函数将模型输出转化为概率分布。假设我们有 K 个类别,模型输出的概率分布为 p(y=k|x; θ),其中 y 是真实标签。 那么对于观测数据 {x₁, x₂, ..., xₙ},它们的联合概率可以表示为: P(y₁, y₂, ..., yₙ|x₁, x₂, ..., xₙ; θ) = Πᵢ p(y=yᵢ|x=xᵢ; θ) 我们可以将这个联合概率视为一个关于参数 θ 的函数,记为 L(θ)。为了方便计算,我们可以取对数转换,得到对数似然函数: log L(θ) = Σᵢ log p(y=yᵢ|x=xᵢ; θ) 最大化对数似然函数等价于最小化其相反数的平均值。因此,我们可以定义交叉熵损失函数作为目标函数: J(θ) = -1/n Σᵢ log p(y=yᵢ|x=xᵢ; θ) 可以看出,交叉熵损失函数是对数似然函数的相反数的平均值。通过最小化交叉熵损失函数,我们实际上是在最大化观测数据出现的概率。 总结起来,极大似然估计和交叉熵之间的推导过程是将观测数据的联合概率转换为对数似然函数,再通过最小化相反数的平均值得到交叉熵损失函数。交叉熵损失函数在训练机器学习模型中被广泛使用,特别是在分类问题中。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

liguiyuan112

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值