题目
A robot is located at the top-left corner of a m x n grid (marked ‘Start’ in the diagram below).
The robot can only move either down or right at any point in time. The robot is trying to reach the bottom-right corner of the grid (marked ‘Finish’ in the diagram below).
How many possible unique paths are there?
分析
- 给出一个矩阵,每一步可以选择向下或者向右
- pathNum[i][j] = pathNum[i - 1][j] + pathNum[i][j - 1];
- 具体可见注释
实现
/*
Author:Fancy
Date:2017-03-20
Algorithm:64-Minimum Path Sum
Time Complexity:
*/
class Solution {
public:
int uniquePaths(int m, int n) {
if (m <= 0 || n <= 0)
return -1;
//保存每个位置有多少种可能性
vector<vector<int>> pathNum(m , vector<int>(n ,0));
//第一列的可能性置为1
for (int i = 0; i < m; i++)
pathNum[i][0] = 1;
//第一行的可能性置为1
for (int j = 0; j < n; j++)
pathNum[0][j] = 1;
for (int i = 1; i < m; i++)
for (int j = 1; j < n; j++)
//每一步可以选择向下或者向右,反推就是当前位置的路径数由上位置和左位置的路径数加和
pathNum[i][j] = pathNum[i - 1][j] + pathNum[i][j - 1];
return pathNum[m - 1][n - 1];
}
};