Python中使用matplotlib绘制各类图表示例

本文介绍了Python中使用matplotlib库进行数据可视化的几种常见图表,包括折线图、柱状图、直方图、饼图、括线图、散点图、箱线图和热力图,以及树状图的绘制方法,提供了详细的代码示例和参数说明,帮助读者理解如何用Python进行数据可视化分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

折线图

折线图是一种用于表示数据随时间、变量或其他连续性变化的趋势的图表。通过在横轴上放置时间或如此类似的连续变量,可以在纵轴上放置数据点的值,从而捕捉到数据随时间发生的变化。折线图可以用于比较不同变量的趋势,轻松地发现不同的变量之间的差异。

import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = np.linspace(0, 10, 100)
y1 = np.sin(x)
y2 = np.cos(x)

# 创建一个绘图窗口,大小为8x6英寸
plt.figure(figsize=(8, 6))

# 绘制折线图
plt.plot(x, y1, label='sin(x)')
plt.plot(x, y2, label='cos(x)')

# 添加图例,显示在右上角
plt.legend(loc='upper right')

# 添加标题和轴标签
plt.title('Sin and Cos functions')
plt.xlabel('x')
plt.ylabel('y')

# 显示网格线
plt.grid(True)

# 保存图像,支持多种格式,如PNG、PDF、SVG等
plt.savefig('line_plot.png', dpi=300)

# 显示图像
plt.show()

示例结果:

在这里插入图片描述

参数说明:

  • plt.figure(figsize=(8, 6)):创建一个大小为8x6英寸的绘图窗口。
  • plt.plot(x, y1, label='sin(x)'):绘制折线图,x和y1是数据点的x坐标和y坐标,label是该折线的标签,用于图例中显示。
  • plt.legend(loc='upper right'):添加图例,loc参数指定图例的位置,可以是字符串’upper right’等也可以是数字0~10。
  • plt.title('Sin and Cos functions'):添加标题。
  • plt.xlabel('x'):添加x轴标签。
  • plt.ylabel('y'):添加y轴标签。
  • plt.grid(True):显示网格线。
  • plt.savefig('line_plot.png', dpi=300):保存图像到文件line_plot.png中,dpi参数指定输出分辨率。
柱状图

柱状图是一种用于比较不同组数据之间差异的图表。它通过将每个数据组的值表示为柱形的高度来显示差异。柱状图可用于比较不同分类数据的数量、频率或比率,用于显示该类别数据的相对大小。

import matplotlib.pyplot as plt
import numpy as np

# 生成数据
x = ['A', 'B', 'C', 'D', 'E']
y1 = [3, 7, 2, 5, 9]
y2 = [5, 2, 6, 3, 1]

# 创建一个绘图窗口,大小为8x6英寸
plt.figure(figsize=(8, 6))

# 绘制柱状图
plt.bar(x, y1, color='lightblue', label='Group 1')
plt.bar(x, y2, color='pink', bottom=y1, label='Group 2')

# 添加图例,显示在右上角
plt.legend(loc='upper right')

# 添加标题和轴标签
plt.title('Bar Plot')
plt.xlabel('Category'
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值