分布式系统常见的事务处理机制

分布式系统常见的事务处理机制

    为保障系统的可用性、可靠性以及性能,在分布式系统中,往往会设置数据冗余,即对数据进行复制。举例来说,当一个数据库的副本被破环以后,那么系统只需要转换到其他数据副本就能继续运行下去。另外一个例子,当访问单一服务器管理的数据的进程数不断增加时,系统就需要对服务器的数量进行扩充,此时,对服务器进行复制,随后让它们分担工作负荷,就可以提高性能。但同时,如何保障多个数据节点之间数据的一致以及如何处理分布式事务,将成为为一个复杂的话题。本文将介绍常用的事务处理机制。

CAP 定理

CAP 定理(也称为 Brewer 定理),是由计算机科学家 Eric Brewer 提出的,即在分布式计算机系统不可能同时提供以下全部三个保证:

  • 一致性(Consistency):所有节点同一时间看到是相同的数据;
  • 可用性(Availability):不管是否成功,确保每一个请求都能接收到响应;
  • 分区容错性(Partition tolerance):系统任意分区后,在网络故障时。

显然,为了保障性能和可靠性,我们将数据复制多份,分布到多个节点上,同时也带来了一个难点,那就是如何保持各个副本数据的一致性。换句话说,我们选择了 AP ,则必须要牺牲掉 C 了。

但是,在实际的应用场景中,数据的一致性往往也是需要保证的。那么这是否违背了 CAP 定理呢?

一致性模型

其实,数据的一致性也分几种情况,大致可以分为:

  • Weak 弱一致性:当你写入一个新值后,读操作在数据副本上可能读出来,也可能读不出来。比如:某些存储系统,搜索引擎,实时游戏,语音聊天等,这些数据本文对完整性要求不高,数据是否一致关系也不大。
  • Eventually 最终一致性:当你写入一个新值后,并不一定能马上读出来,但在某个时间窗口之后保证最终能读出来。比如:DNS,电子邮件,消息中间件等系统,大部分分布式系统技术都采用这类模式。
  • Strong 强一致性:新的数据一旦写入,在任意副本任意时刻都能读到新值。比如:文件系统,RDBMS都是强一致性的。

也就是说,在设计分布式系统时,我们并不一定要求是强一致性的,根据应用场景可以选择弱一致性或者是最终一致性。

事务的作用

事务有如下作用:

  • RDBMS都是强一致性的。
  • 保证执行结果的正确性
  • 保证数据的一致性
  • ACID
常见的事务处理机制
  • Master-Slave 复制
Slave 一般是 Master 的备份。在这样的系统中,一般是如下设计的:
  • 读写请求都由 Master 负责。
  • 写请求写到 Master 上后,由 Master 同步到 Slave 上
这种机制的特点是:
  • 数据同步通常是异步的
  • 有良好的吞吐量,低延迟 * 在大多数 RDBMS 中支持,比如 MySQL二进制日志
  • 弱/最终一致性
这种机制的缺点是,如果 Master 挂了,Slave 只能提供读服务,而没有写服务。
 
Master-Master 多主复制

     指一个系统存在两个或多个Master,每个Master都提供读写服务。这个机制是Master-Slave的加强版,数据间同步一般是通过Master间的异步完成,所以是最终一致性。 Master-Master的好处是,一台Master挂了,别的Master可以正常做读写服务,他和Master-Slave一样,当数据没有被复制到别的Master上时,数据会丢失。很多数据库都支持Master-Master的Replication的机制。

这种机制的特点是:
  • 异步
  • 最终的一致性
  • 多个节点间需要序列化协议
     
两阶段提交

     两阶段提交协议 (Two-phase commit protocol,2PC)的过程涉及到协调者和参与者。协调者可以看做成事务的发起者,同时也是事务的一个参与者。对于一个分布式事务来说,一个事务是涉及到多个参与者的。具体的两阶段提交的过程如下:

     第一阶段(准备阶段)

              协调者节点向所有参与者节点询问是否可以执行提交操作(vote),并开始等待各参与者节点的响应。

              参与者节点执行询问发起为止的所有事务操作,并将 Undo 信息和 Redo 信息写入日志。(注意:若成功这里其实

              每个参与者已经执行了事务操作)。

              各参与者节点响应协调者节点发起的询问。如果参与者节点的事务操作实际执行成功,
              则它返回一个“同意”消息;如果参与者节点的事务操作实际执行失败,则它返回一个“中止”消息。

     第二阶段(提交阶段)

              如果协调者收到了参与者的失败消息或者超时,直接给每个参与者发送回滚(Rollback)消息;否则,
              发送提交(Commit)消息;参与者根据协调者的指令执行提交或者回滚操作,释放所有事务处理过程中使用的
              锁资源。(注意:必须在最后阶段释放锁资源)

              当协调者节点从所有参与者节点获得的相应消息都为“同意”时:
                          协调者节点向所有参与者节点发出“正式提交(commit)”的请求。
                          参与者节点正式完成操作,并释放在整个事务期间内占用的资源。
                          参与者节点向协调者节点发送“完成”消息。

              如果任一参与者节点在第一阶段返回的响应消息为”中止”,或者 协调者节点在第一阶段的询问超时之前
              无法获取所有参与者节点的响应消息时:
                          协调者节点向所有参与者节点发出”回滚操作(rollback)”的请求。
                          参与者节点利用之前写入的Undo信息执行回滚,并释放在整个事务期间内占用的资源。
                          参与者节点向协调者节点发送”回滚完成”消息。
                          协调者节点受到所有参与者节点反馈的”回滚完成”消息后,取消事务。
                          协调者节点受到所有参与者节点反馈的”完成”消息后,完成事务

              不管最后结果如何,第二阶段都会结束当前事务。

     二段式提交协议的优缺点:

              优点:原理简单,实现方便;
              缺点:
                        1. 同步阻塞问题。执行过程中,所有参与节点都是事务阻塞型的。
                        2. 单点故障。由于协调者的重要性,一旦协调者发生故障,参与者会一直阻塞下去。
                        尤其在第二阶段,协调者发生故障,那么所有的参与者还都处于锁定事务资源的状态中,
                        而无法继续完成事务操作。
                        3. 数据不一致。在阶段二中,当协调者向参与者发送 commit 请求之后,发生了局部网络异常或者在
                        发送 commit 请求过程中协调者发生了故障,这回导致只有一部分参与者接受到了 commit 请求。
                        而在这部分参与者接到 commit 请求之后就会执行 commit 操作。但是其他部分未接到 commit
                        请求的机器则无法执行事务提交。于是整个分布式系统便出现了数据部一致性的现象。
                        4. 二阶段无法解决的问题:协调者再发出 commit 消息之后宕机,而唯一接收到这条消息的参与者同时也
                        宕机了。那么即使协调者通过选举协议产生了新的协调者,这条事务的状态也是不确定的,没人知道事务
                        是否被已经提交。

               为了解决两阶段提交协议的种种问题,研究者们在二阶段提交的基础上做了改进,提出了三阶段提交。

三阶段提交

     三阶段提交协议(Three-phase commit protocol,3PC),是二阶段提交(2PC)的改进版本。与两阶段提交不同的是,三阶段提交有两个改动点:

  • 引入超时机制。同时在协调者和参与者中都引入超时机制。
  • 在第一阶段和第二阶段中插入一个准备阶段。保证了在最后提交阶段之前各参与节点的状态是一致的。

即 3PC 把 2PC 的准备阶段再次一分为二,这样三阶段提交就有 CanCommit、PreCommit、DoCommit 三个阶段。

CanCommit 阶段

     CanCommit 阶段其实和 2PC 的准备阶段很像。协调者向参与者发送 commit 请求,参与者如果可以提交就返回 Yes 响应,否则返回 No 响应。

  • 事务询问:协调者向参与者发送 CanCommit 请求。询问是否可以执行事务提交操作。然后开始等待参与者的响应。
  • 响应反馈:参与者接到 CanCommit 请求之后,正常情况下,如果其自身认为可以顺利执行事务,则返回 Yes 响应,并进入预备状态。否则反馈 No

PreCommit 阶段

     协调者根据参与者的反应情况来决定是否可以记性事务的 PreCommit 操作。根据响应情况,有以下两种可能。

  • 假如协调者从所有的参与者获得的反馈都是 Yes 响应,那么就会执行事务的预执行。
  • 发送预提交请求:协调者向参与者发送 PreCommit 请求,并进入Prepared 阶段。
  • 事务预提交:参与者接收到 PreCommit 请求后,会执行事务操作,并将undo 和 redo 信息记录到事务日志中。
  • 响应反馈:如果参与者成功的执行了事务操作,则返回 ACK 响应,同时开始等待最终指令。

假如有任何一个参与者向协调者发送了 No 响应,或者等待超时之后,协调者都没有接到参与者的响应,那么就执行事务的中断。

  • 发送中断请求:协调者向所有参与者发送 abort 请求。
  • 中断事务:参与者收到来自协调者的 abort 请求之后(或超时之后,仍未收到协调者的请求),执行事务的中断。

doCommit 阶段

     该阶段进行真正的事务提交,也可以分为以下两种情况。

  • 执行提交
  • 发送提交请求:协调接收到参与者发送的 ACK 响应,那么他将从预提交状态进入到提交状态。并向所有参与者发送 doCommit 请求。
  • 事务提交:参与者接收到 doCommit 请求之后,执行正式的事务提交。并在完成事务提交之后释放所有事务资源。
  • 响应反馈:事务提交完之后,向协调者发送 ACK 响应。
  • 完成事务:协调者接收到所有参与者的 ACK 响应之后,完成事务。
  • 中断事务:协调者没有接收到参与者发送的 ACK 响应(可能是接受者发送的不是 ACK 响应,也可能响应超时),那么就会执行中断事务。
  • 发送中断请求:协调者向所有参与者发送 abort 请求
  • 事务回滚:参与者接收到 abort 请求之后,利用其在阶段二记录的undo 信息来执行事务的回滚操作,并在完成回滚之后释放所有的事务资源。
  • 反馈结果:参与者完成事务回滚之后,向协调者发送 ACK 消息
  • 中断事务:协调者接收到参与者反馈的 ACK 消息之后,执行事务的中断。

     在 doCommit 阶段,如果参与者无法及时接收到来自协调者的 doCommit 或者 rebort 请求时,会在等待超时之后,会继续进行事务的提交。即当进入第三阶段时,由于网络超时等原因,虽然参与者没有收 到 commit 或者 abort 响应,事务仍然会提交。

     三阶段提交不会一直持有事务资源并处于阻塞状态。但是这种机制也会导致数据一致性问题,因为,由于网络原因,协调者发送的 abort 响应没有及时被参与者接收到,那么参与者在等待超时之后执行了 commit 操作,这样就和其他接到 abort 命令并执行回滚的参与者之间存在数据不一致的情况。

Paxos 算法

     Paxos 算法是 Leslie Lamport 于1990年提出的一种基于消息传递且具有高度容错特性的一致性算法。Paxos 算法目前在 Google 的 Chubby、MegaStore、Spanner 等系统中得到了应用,Hadoop 中的 ZooKeeper 也使用了 Paxos 算法。

在 Paxos 算法中,分为4种角色:

  • Proposer :提议者
  • Acceptor:决策者
  • Client:产生议题者
  • Learner:最终决策学习者

算法可以分为两个阶段来执行:

     阶段1

  • Proposer 选择一个议案编号 n,向 acceptor 的多数派发送编号也为 n 的 prepare 请求。
  • Acceptor:如果接收到的 prepare 请求的编号 n 大于它已经回应的任何prepare 请求,它就回应已经批准的编号最高的议案(如果有的话),并承诺不再回应任何编号小于 n 的议案;

     阶段2

  • Proposer:如果收到了多数 acceptor 对 prepare 请求(编号为 n)的回应,它就向这些 acceptor 发送议案{n, v}的 accept 请求,其中 v 是所有回应中编号最高的议案的决议,或者是 proposer 选择的值,如果回应说还没有议案。
  • Acceptor:如果收到了议案{n, v}的 accept 请求,它就批准该议案,除非它已经回应了一个编号大于 n 的议案。
  • Proposer 可以提出多个议案,只要它遵循上面的算法。它可以在任何时刻放弃一个议案。(这不会破坏正确性,即使在议案被放弃后,议案的请求或者回应消息才到达目标)如果其它的 proposer 已经开始提出更高编号的议案,那么最好能放弃当前的议案。因此,如果 acceptor 忽略一个 prepare 或者 accept 请求(因为已经收到了更高编号的 prepare 请求),它应该告知 proposer 放弃议案。这是一个性能优化,而不影响正确性。
参考文献
 
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值