ClickHouse小试牛刀:性能初测(与Postgresql对比)

本文对比了PostgreSQL与ClickHouse在不同数据规模下进行聚合排序操作的性能表现,并重点测试了ClickHouse在多字段聚合场景下的性能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言
使用的插件及数据库版本、配置

PostgresqlClickHouse
Version10.820.9.3.45
CPU4c4c
Memory16g16g

准备工作

由于PG数据表已经存在,所以需要准备一张Clickhouse的表,这里使用基础的MergeTree引擎,没有做分区,也没有做自定义的配置,采用默认配置,建表语句如下:

create table m_retailitem2(ID   String,
AD_CLIENT_ID  String,
AD_ORG_ID     String,
ISACTIVE      String,
CREATIONDATE  String,
OWNERID       String,
MODIFIEDDATE  String,
MODIFIERID    String,
M_RETAIL_ID   String,
ORDERNO       String,
C_VIP_ID      String,
...
)ENGINE MergeTree()
ORDER BY (CREATIONDATE,MODIFIEDDATE);

备注:表有134个字段,搞了3500W数据
在这里插入图片描述

PG与CK对比测试

备注:这里PG只有300W数据,我们先做一些测试对比,本次测试只对比聚合排序的性能
1、group by一个字段
ClickHouse:
在这里插入图片描述
Postgresql:
在这里插入图片描述
2、group by两个字段

ClickHouse:
在这里插入图片描述
Postgresql:
在这里插入图片描述
第一阶段测试初步结论:在PG300W数据,CK3500W数据的情况下,对字段进行聚合排序,CK显示的性能由于PG

CK多字段聚合测试

1、group by 3个字段
在这里插入图片描述
2、group by 4个字段
在这里插入图片描述
结论:随着聚合字段的增多,响应时间也在增长,但是性能依旧很不错

待续//

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值