Tesseract-OCR 图片数字识别的样本训练

本文介绍了如何训练Tesseract-OCR以提高对游戏中数字的识别精度。通过准备样本图像,使用jTessBoxEditor工具进行训练,包括合并图像、生成Box文件、文字校正、定义字体特征文件和生成语言文件,最终实现对数字的准确识别。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

最近想利用python写一段识别穿越火线交易所各种道具价格的代码。命令行执行:

tesseract.exe grab.jpg result -l eng

使用默认的Tesseract语言库总会识别成字母或者乱码,如下图:

于是参考https://blog.csdn.net/yasi_xi/article/details/8763385这篇帖子,训练了一个对游戏中数字识别度较高的样本库。

训练样本:

待识别的图像如下图中出售价格我的CF点

python代码:

 

import win32con
import win32gui
import pytesseract
from PIL import ImageGrab
import time



def get_bin_table(threshold=105):
    # 获取灰度转二值的映射table
    table = []
    for i in range(256):
        if i < threshold:
            table.append(0)
        else:
            table.append(1)
    return table


def grab():
    hwnd = win32gui.FindWindow(0, "Crossfire20170910_0000.bmp - 画图")  # 获取句柄
    print(hwnd)
    left, top, right, bottom = win32gui.GetWindowRect(hwnd)
    print(left, top, right, bottom)
    win32gui.ShowWindow(hwnd, win32con.SW_SHOWNORMAL)
    win32gui.SetForegroundWindow(hwnd)
    time.sleep(0.2)
    img = ImageGrab.grab((870,478,913,495))  # 截图,获取需要识别的区域
    img.show()
    imggray = img.convert('L')  # 转化为灰度图
    table = get_bin_table()
    out = imggray.point(table, '1')
    #out.show()
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值