https://www.cnblogs.com/nigang/p/3658990.html
参考文章
//最短路径算法Dijkstra 迪杰斯特拉=》参考文章:https://www.cnblogs.com/nigang/p/3658990.html
//用邻接矩阵存储一个图
//顶点
function Vertex(name) {
this.name =name;
}
//邻接矩阵
//maxvex:顶点数
function arc(maxvex){
this.maxvex = maxvex;
this.arcnum = 0;
this.data = new Array(maxvex);
for (var i = 0; i < this.data.length; i++) {
this.data[i] = new Array(maxvex);
for (var j = 0; j < this.data[i].length; j++) {
this.data[i][j] = Infinity;
if(i==j){
this.data[i][j] = 0;
}
}
}
}
//图
function Mgraph(maxvex,vertexs){
this.arc = new arc(maxvex);
this.vertexs = vertexs;
}
Mgraph.prototype.print = function(){
var acr=this.arc
for (var i = 0; i < acr.data.length; i++) {
console.log(acr.data[i]+"\n")
}
}
//添加边,构造无向边
Mgraph.prototype.addArc = function(start,end,length){
var i = this.vertexs.indexOf(start);
var j = this.vertexs.indexOf(end);
this.arc.data[i][j] = length;
this.arc.data[j][i] = length;
this.arc.arcnum++;
}
Mgraph.prototype.shortPath_Dijkstra = function(v0){
var v0_index = this.vertexs.indexOf(v0);
var final = [];//代表当前是否计算出来了结果
var pathmatrix = [];//最短路径下标数组
var shortpathtable = [];//存储到各点的最短路径的权值和
// console.info('开始初始化:准备计算'+v0.name+'到各个节点的最短路径');
for (var i = 0; i < this.arc.maxvex; i++) {
final.push(0);
shortpathtable.push(this.arc.data[v0_index][i]);
pathmatrix.push(0);
}
shortpathtable[v0_index] = 0;
final[v0_index] = 1;
// console.info('初始化完毕:final:'+final);
// console.info('初始化完毕:pathmatrix:'+pathmatrix);
// console.info('初始化完毕:shortpathtable:'+shortpathtable);
var min,k;
this.print()
for (var i = 0; i < this.arc.maxvex; i++) {
//console.info('添加一个点:'+this.vertexs[i].name+'参与计算');
if(i == v0_index){
continue;
}
min = Infinity;
//当前距离列表中得到最小值及其下标
for (var w = 0; w < this.arc.maxvex; w++) {
//得到最小点
if(!final[w]&&shortpathtable[w]<Infinity){
// console.info('发现点:'+this.vertexs[w].name+'到'+v0.name+'的最短路径是'+
// shortpathtable[w]);
}
if(!final[w]&&shortpathtable[w]<min){
k=w;
min = shortpathtable[w];
}
}
console.log("当前最小位置k="+k+"最小值为"+min+"当前已访问节点"+final)
// console.info('没错,'+this.vertexs[k].name+'是最接近当前'+v0.name+'的');
final[k] = 1;
//
console.log("第"+i+"次的到各点的最短路径的权值和"+shortpathtable)
for (var w = 0; w < this.arc.maxvex; w++) {
var minNode=this.arc.data[k][w];
if(!final[w]&&(min+this.arc.data[k][w]<shortpathtable[w])){
// console.info('因为'+this.vertexs[k].name+'的参与,发现点:'
// +this.vertexs[w].name+'到'+v0.name+'的最短路径是'+
// (min+this.arc.data[k][w]));
shortpathtable[w] = min+this.arc.data[k][w]
pathmatrix[w] = k;
}
}
}
// console.info(final);
// console.info(pathmatrix);
console.info("最后一次"+shortpathtable);
}
//建造一个
// var v0 = new Vertex('V0');
// var v1 = new Vertex('V1');
// var v2 = new Vertex('V2');
// var v3 = new Vertex('V3');
// var v4 = new Vertex('V4');
// var v5 = new Vertex('V5');
// var v6 = new Vertex('V6');
// var v7 = new Vertex('V7');
// var v8 = new Vertex('V8');
// var vertexs = [v0,v1,v2,v3,v4,v5,v6,v7,v8];
// var mgraph = new Mgraph(9,vertexs);
// mgraph.addArc(v1,v0,10);
// mgraph.addArc(v0,v5,11);
// mgraph.addArc(v1,v2,18);
// mgraph.addArc(v1,v8,12);
// mgraph.addArc(v1,v6,16);
// mgraph.addArc(v2,v8,8);
// mgraph.addArc(v2,v3,22);
// mgraph.addArc(v3,v8,21);
// mgraph.addArc(v3,v4,20);
// mgraph.addArc(v3,v7,16);
// mgraph.addArc(v3,v6,24);
// mgraph.addArc(v4,v7,7);
// mgraph.addArc(v4,v5,26);
// mgraph.addArc(v5,v6,17);
var a = new Vertex('a');
var b = new Vertex('b');
var c = new Vertex('c');
var d = new Vertex('d');
var e = new Vertex('e');
var f = new Vertex('f');
var vertexs = [a,b,c,d,e,f];
var mgraph = new Mgraph(6,vertexs);
mgraph.addArc(a,b,6);
mgraph.addArc(a,c,3);
mgraph.addArc(b,c,2);
mgraph.addArc(b,d,5);
mgraph.addArc(c,d,3);
mgraph.addArc(c,e,4);
mgraph.addArc(d,e,2);
mgraph.addArc(d,f,3);
mgraph.addArc(e,f,5);
//console.info(mgraph.arc);
mgraph.shortPath_Dijkstra(a);
优点:O(N*N),加堆优化:O(N*logN)
缺点: 在单源最短路径问题的某些实例中,可能存在权为负的边。
如果图G=(V,E)不包含从源s可达的负权回路,
则对所有v∈V,最短路径的权定义d(s,v)依然正确,
即使它是一个负值也是如此。但如果存在一从s可达的负回路,
最短路径的权的定义就不能成立。S到该回路上的结点就不存在最短路径。
当有向图中出现负权时,则Dijkstra算法失效。当不存在源s可达的负回路时,
我们可用Bellman-Ford算法实现。
参考文章