图算法

https://www.cnblogs.com/nigang/p/3658990.html

参考文章

 

 //最短路径算法Dijkstra 迪杰斯特拉=》参考文章:https://www.cnblogs.com/nigang/p/3658990.html
//用邻接矩阵存储一个图
//顶点
function Vertex(name) {
  this.name =name;
}
//邻接矩阵
//maxvex:顶点数
function arc(maxvex){
  this.maxvex = maxvex;
  this.arcnum = 0;
  this.data = new Array(maxvex);
  for (var i = 0; i < this.data.length; i++) {
    this.data[i] = new Array(maxvex);
    for (var j = 0; j < this.data[i].length; j++) {
      this.data[i][j] = Infinity;
      if(i==j){
        this.data[i][j] = 0;
      }
    }
  }
}
//图
function Mgraph(maxvex,vertexs){
  this.arc = new arc(maxvex);
  this.vertexs = vertexs;
}
Mgraph.prototype.print = function(){
  var  acr=this.arc
  for (var i = 0; i < acr.data.length; i++) {
    console.log(acr.data[i]+"\n")
    
  }
}
//添加边,构造无向边
Mgraph.prototype.addArc = function(start,end,length){
  var i = this.vertexs.indexOf(start);
  var j = this.vertexs.indexOf(end);
  this.arc.data[i][j] = length;
  this.arc.data[j][i] = length;
  this.arc.arcnum++;
}
Mgraph.prototype.shortPath_Dijkstra = function(v0){
  var v0_index = this.vertexs.indexOf(v0);
  var final = [];//代表当前是否计算出来了结果
  var pathmatrix = [];//最短路径下标数组
  var shortpathtable = [];//存储到各点的最短路径的权值和
  // console.info('开始初始化:准备计算'+v0.name+'到各个节点的最短路径');
  for (var i = 0; i < this.arc.maxvex; i++) {
    final.push(0);
    shortpathtable.push(this.arc.data[v0_index][i]);
    pathmatrix.push(0);
  }
  shortpathtable[v0_index] = 0;
  final[v0_index] = 1;
  // console.info('初始化完毕:final:'+final);
  // console.info('初始化完毕:pathmatrix:'+pathmatrix);
  // console.info('初始化完毕:shortpathtable:'+shortpathtable);
  var min,k;
  this.print()
  for (var i = 0; i < this.arc.maxvex; i++) {
    //console.info('添加一个点:'+this.vertexs[i].name+'参与计算');
    if(i == v0_index){
      continue;
    }
    min = Infinity;
    //当前距离列表中得到最小值及其下标
    for (var w = 0; w < this.arc.maxvex; w++) {
      //得到最小点
      if(!final[w]&&shortpathtable[w]<Infinity){
        // console.info('发现点:'+this.vertexs[w].name+'到'+v0.name+'的最短路径是'+
        //   shortpathtable[w]);
      }
      if(!final[w]&&shortpathtable[w]<min){
        k=w;
        min = shortpathtable[w];
      }
    }
    console.log("当前最小位置k="+k+"最小值为"+min+"当前已访问节点"+final)
    // console.info('没错,'+this.vertexs[k].name+'是最接近当前'+v0.name+'的');
    final[k] = 1;
    // 
    console.log("第"+i+"次的到各点的最短路径的权值和"+shortpathtable)
    for (var w = 0; w < this.arc.maxvex; w++) {
      var minNode=this.arc.data[k][w];
      if(!final[w]&&(min+this.arc.data[k][w]<shortpathtable[w])){
        // console.info('因为'+this.vertexs[k].name+'的参与,发现点:'
        //   +this.vertexs[w].name+'到'+v0.name+'的最短路径是'+
        //   (min+this.arc.data[k][w]));
        shortpathtable[w] = min+this.arc.data[k][w]
        pathmatrix[w] = k;
      }
    }
   
  }
  // console.info(final);
  // console.info(pathmatrix);
  console.info("最后一次"+shortpathtable);
}
//建造一个
// var v0 = new Vertex('V0');
// var v1 = new Vertex('V1');
// var v2 = new Vertex('V2');
// var v3 = new Vertex('V3');
// var v4 = new Vertex('V4');
// var v5 = new Vertex('V5');
// var v6 = new Vertex('V6');
// var v7 = new Vertex('V7');
// var v8 = new Vertex('V8');
// var vertexs = [v0,v1,v2,v3,v4,v5,v6,v7,v8];
// var mgraph = new Mgraph(9,vertexs);
// mgraph.addArc(v1,v0,10);
// mgraph.addArc(v0,v5,11);
// mgraph.addArc(v1,v2,18);
// mgraph.addArc(v1,v8,12);
// mgraph.addArc(v1,v6,16);
// mgraph.addArc(v2,v8,8);
// mgraph.addArc(v2,v3,22);
// mgraph.addArc(v3,v8,21);
// mgraph.addArc(v3,v4,20);
// mgraph.addArc(v3,v7,16);
// mgraph.addArc(v3,v6,24);
// mgraph.addArc(v4,v7,7);
// mgraph.addArc(v4,v5,26);
// mgraph.addArc(v5,v6,17);


var a = new Vertex('a');
var b = new Vertex('b');
var c = new Vertex('c');
var d = new Vertex('d');
var e = new Vertex('e');
var f = new Vertex('f');

var vertexs = [a,b,c,d,e,f];
var mgraph = new Mgraph(6,vertexs);
mgraph.addArc(a,b,6);
mgraph.addArc(a,c,3);
mgraph.addArc(b,c,2);
mgraph.addArc(b,d,5);
mgraph.addArc(c,d,3);
mgraph.addArc(c,e,4);
mgraph.addArc(d,e,2);
mgraph.addArc(d,f,3);
mgraph.addArc(e,f,5);

//console.info(mgraph.arc);
mgraph.shortPath_Dijkstra(a);

 

优点:O(N*N),加堆优化:O(N*logN)
缺点:    在单源最短路径问题的某些实例中,可能存在权为负的边。
如果图G=(V,E)不包含从源s可达的负权回路,
则对所有v∈V,最短路径的权定义d(s,v)依然正确,
即使它是一个负值也是如此。但如果存在一从s可达的负回路,
最短路径的权的定义就不能成立。S到该回路上的结点就不存在最短路径。
当有向图中出现负权时,则Dijkstra算法失效。当不存在源s可达的负回路时,
我们可用Bellman-Ford算法实现。

 

参考文章

https://www.cnblogs.com/ECJTUACM-873284962/p/6995648.html

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

chenxuezhou

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值