PyTorch
文章平均质量分 85
PyTorch学习
林茕夜
一个平平无奇摸鱼,搬砖者
展开
-
翻译:PyTorch基础知识学习 - 自动微分TORCH.AUTOGRAD
翻译文章地址:自动微分一、自动微分TORCH.AUTOGRAD在训练神经网络时,最常用的算法是 反向传播。在该算法中,参数(模型权重)根据损失函数相对于给定参数的梯度进行调整。为了计算这些梯度,PyTorch 有一个内置的微分引擎,称为torch.autograd. 它支持任何计算图的梯度自动计算。考虑最简单的一层神经网络,具有输入x、参数w和b以及一些损失函数。它可以通过以下方式在 PyTorch 中定义:import torchx = torch.ones(5) # input tens翻译 2022-05-05 11:08:04 · 292 阅读 · 0 评论 -
翻译:PyTorch基础知识学习 - 构建神经网络
神经网络由对数据执行操作的层/模块组成。torch.nn命名空间提供了构建自己的神经网络所需的所有构建块。PyTorch中的每个模块都是 nn.Module 的子类。神经网络是一个模块本身,它由其他模块(层)组成。这种嵌套结构允许轻松构建和管理复杂的架构。在接下来的部分中,我们将构建一个神经网络来对 FashionMNIST 数据集中的图像进行分类。一、引用相关的库,代码如下:import osimport torchfrom torch import nnfrom torch.utils.da翻译 2022-04-29 16:12:31 · 288 阅读 · 0 评论 -
翻译:PyTorch基础知识学习 - transforms(变换)
翻译文章链接:PyTorch变换一、TRANSFORMS(变换)数据并不总是以训练机器学习算法所需的最终处理形式出现。我们使用转换来对数据进行一些操作并使其适合训练。所有 TorchVision 数据集都有两个参数 -transform修改特征和 target_transform修改标签 - 接受包含转换逻辑的可调用对象。torchvision.transforms模块提供了几个开箱即用的常用转换。FashionMNIST 特征是 PIL 图像格式,标签是整数。对于训练,我们需要将特征作为归一化张翻译 2022-04-29 11:31:31 · 381 阅读 · 0 评论 -
翻译:PyTorch基础知识学习 - 数据集和数据加载器
翻译 2022-04-28 18:11:16 · 375 阅读 · 0 评论 -
翻译:PyTorch基础知识学习 - 张量
翻译文章链接:https://pytorch.org/tutorials/beginner/basics/tensorqs_tutorial.html1、张量是一种特殊的数据结构,与数组和矩阵非常相似。在 PyTorch 中,我们使用张量对模型的输入和输出以及模型的参数进行编码。张量类似于NumPy 的ndarray,除了张量可以在 GPU 或其他硬件加速器上运行。事实上,张量和 NumPy 数组通常可以共享相同的底层内存,从而无需复制数据2、首先,导入所需用的python库,代码如下:import翻译 2022-04-24 15:58:19 · 188 阅读 · 0 评论