用Python和Pygame写游戏-从入门到精通(13)简单的AI游戏

本文介绍了一个简单的AI游戏实现,游戏包含蚂蚁寻找树叶并带回巢穴的基本逻辑,同时引入了蜘蛛作为游戏中的挑战元素。通过状态机的方式实现了蚂蚁的探索、寻找、运送及狩猎等行为。

简单的AI游戏

SCREEN_SIZE = (640, 480)
NEST_POSITION = (320, 240)
ANT_COUNT = 20
NEST_SIZE = 100.

import pygame
from pygame.locals import *
from random import randint, choice
import copy
import sys
import vector2


class State(object):
    def __init__(self, name):
        self.name = name
    def do_actions(self):
        pass
    def check_conditions(self):
        pass
    def entry_actions(self):
        pass
    def exit_actions(self):
        pass        
 
class StateMachine(object):
    def __init__(self):
        self.states = {}
        self.active_state = None
 
    def add_state(self, state):
        self.states[state.name] = state
 
    def think(self):
        if self.active_state is None:
            return
        self.active_state.do_actions()
        new_state_name = self.active_state.check_conditions()
        if new_state_name is not None:
            self.set_state(new_state_name)
 
    def set_state(self, new_state_name):
        if self.active_state is not None:
            self.active_state.exit_actions()
        self.active_state = self.states[new_state_name]
        self.active_state.entry_actions()
 
class World(object):
    def __init__(self):
        self.entities = {}
        self.entity_id = 0
        self.background = pygame.surface.Surface(SCREEN_SIZE).convert()
        self.background.fill((255, 255, 255))
        pygame.draw.circle(self.background, (200, 255, 200), NEST_POSITION, int(NEST_SIZE))
 
    def add_entity(self, entity):
        self.entities[self.entity_id] = entity
        entity.id = self.entity_id
        self.entity_id += 1
 
    def remove_entity(self, entity):
        del self.entities[entity.id]
 
    def get(self, entity_id):
        if entity_id in self.entities:
            return self.entities[entity_id]
        else:
            return None
 
    def process(self, time_passed):
        time_passed_seconds = time_passed / 1000.0
        self.entities2 = copy.copy(self.entities)
        for entity in self.entities2.values():
            entity.process(time_passed_seconds)
 
    def render(self, surface):
        surface.blit(self.background, (0, 0))
        for entity in self.entities.values():
            entity.render(surface)
 
    def get_close_entity(self, name, location, range=100.):
        location = vector2.Vec2d(*location)
        for entity in self.entities.values():
            if entity.name == name:
                distance = location.get_distance(entity.location)
                if distance < range:
                    return entity
        return None
 
class GameEntity(object):
 
    def __init__(self, world, name, image):
 
        self.world = world
        self.name = name
        self.image = image
        self.location = vector2.Vec2d(0, 0)
        self.destination = vector2.Vec2d(0, 0)
        self.speed = 0.
        self.brain = StateMachine()
        self.id = 0
 
    def render(self, surface):
        x, y = self.location
        w, h = self.image.get_size()
        surface.blit(self.image, (x-w/2, y-h/2))   
 
    def process(self, time_passed):
        self.brain.think()
        if self.speed > 0. and self.location != self.destination:
            vec_to_destination = self.destination - self.location
            distance_to_destination = vec_to_destination.get_length()
            heading = vec_to_destination.normalized()
            travel_distance = min(distance_to_destination, time_passed * self.speed)
            self.location += travel_distance * heading
 
class Leaf(GameEntity):
    def __init__(self, world, image):
        super().__init__(world, "leaf", image)
 
class Spider(GameEntity):
    def __init__(self, world, image):
        super().__init__(world, "spider", image)
        self.dead_image = pygame.transform.flip(image, 0, 1)
        self.health = 25
        self.speed = 50. + randint(-20, 20)
 
    def bitten(self):
        self.health -= 1
        if self.health <= 0:
            self.speed = 0.
            self.image = self.dead_image
        self.speed = 140.
 
    def render(self, surface):
        super().render(surface)
        x, y = self.location
        w, h = self.image.get_size()
        bar_x = x - 12
        bar_y = y + h/2
        surface.fill( (255, 0, 0), (bar_x, bar_y, 25, 4))
        surface.fill( (0, 255, 0), (bar_x, bar_y, self.health, 4))
 
    def process(self, time_passed):
        x, y = self.location
        if x > SCREEN_SIZE[0] + 2:
            self.world.remove_entity(self)
            return
        super().process(time_passed)
 
class Ant(GameEntity):
    def __init__(self, world, image):
        super().__init__(world, "ant", image)
        exploring_state = AntStateExploring(self)
        seeking_state = AntStateSeeking(self)
        delivering_state = AntStateDelivering(self)
        hunting_state = AntStateHunting(self)
        self.brain.add_state(exploring_state)
        self.brain.add_state(seeking_state)
        self.brain.add_state(delivering_state)
        self.brain.add_state(hunting_state)
        self.carry_image = None
 
    def carry(self, image):
        self.carry_image = image
 
    def drop(self, surface):
        if self.carry_image:
            x, y = self.location
            w, h = self.carry_image.get_size()
            surface.blit(self.carry_image, (x-w, y-h/2))
            self.carry_image = None
 
    def render(self, surface):
        super().render(surface)
        if self.carry_image:
            x, y = self.location
            w, h = self.carry_image.get_size()
            surface.blit(self.carry_image, (x-w, y-h/2))
 
class AntStateExploring(State):
    def __init__(self, ant):
        super().__init__("exploring")
        self.ant = ant
 
    def random_destination(self):
        w, h = SCREEN_SIZE
        self.ant.destination = vector2.Vec2d(randint(0, w), randint(0, h))    
 
    def do_actions(self):
        if randint(1, 20) == 1:
            self.random_destination()
 
    def check_conditions(self):
        leaf = self.ant.world.get_close_entity("leaf", self.ant.location)
        if leaf is not None:
            self.ant.leaf_id = leaf.id
            return "seeking"
        spider = self.ant.world.get_close_entity("spider", NEST_POSITION, NEST_SIZE)
        if spider is not None:
            if self.ant.location.get_distance(spider.location) < 100.:
                self.ant.spider_id = spider.id
                return "hunting"
        return None
 
    def entry_actions(self):
        self.ant.speed = 120. + randint(-30, 30)
        self.random_destination()
 
class AntStateSeeking(State):
    def __init__(self, ant):
        super().__init__("seeking")
        self.ant = ant
        self.leaf_id = None
 
    def check_conditions(self):
        leaf = self.ant.world.get(self.ant.leaf_id)
        if leaf is None:
            return "exploring"
        if self.ant.location.get_distance(leaf.location) < 5.0:
            self.ant.carry(leaf.image)
            self.ant.world.remove_entity(leaf)
            return "delivering"
        return None
 
    def entry_actions(self):
        leaf = self.ant.world.get(self.ant.leaf_id)
        if leaf is not None:
            self.ant.destination = leaf.location
            self.ant.speed = 160. + randint(-20, 20)
 
class AntStateDelivering(State):
    def __init__(self, ant):
        super().__init__("delivering")
        self.ant = ant
 
    def check_conditions(self):
        if vector2.Vec2d(*NEST_POSITION).get_distance(self.ant.location) < NEST_SIZE:
            if (randint(1, 10) == 1):
                self.ant.drop(self.ant.world.background)
                return "exploring"
        return None
 
    def entry_actions(self):
        self.ant.speed = 60.
        random_offset = vector2.Vec2d(randint(-20, 20), randint(-20, 20))
        self.ant.destination = vector2.Vec2d(*NEST_POSITION) + random_offset       
 
class AntStateHunting(State):
    def __init__(self, ant):
        super().__init__("hunting")
        self.ant = ant
        self.got_kill = False
 
    def do_actions(self):
        spider = self.ant.world.get(self.ant.spider_id)
        if spider is None:
            return
        self.ant.destination = spider.location
        if self.ant.location.get_distance(spider.location) < 15.:
            if randint(1, 5) == 1:
                spider.bitten()
                if spider.health <= 0:
                    self.ant.carry(spider.image)
                    self.ant.world.remove_entity(spider)
                    self.got_kill = True
 
    def check_conditions(self):
        if self.got_kill:
            return "delivering"
        spider = self.ant.world.get(self.ant.spider_id)
        if spider is None:
            return "exploring"
        if spider.location.get_distance(NEST_POSITION) > NEST_SIZE * 3:
            return "exploring"
        return None
 
    def entry_actions(self):
        self.speed = 160. + randint(0, 50)
 
    def exit_actions(self):
        self.got_kill = False
 
def run():
    pygame.init()
    close = False
    screen = pygame.display.set_mode(SCREEN_SIZE, 0, 32)
    world = World()
    w, h = SCREEN_SIZE
    clock = pygame.time.Clock()
    ant_image = pygame.image.load("ant.png").convert_alpha()
    leaf_image = pygame.image.load("leaf.png").convert_alpha()
    spider_image = pygame.image.load("spider.png").convert_alpha()
 
    for ant_no in range(ANT_COUNT):
        ant = Ant(world, ant_image)
        ant.location = vector2.Vec2d(randint(0, w), randint(0, h))
        ant.brain.set_state("exploring")
        world.add_entity(ant)
 
    while True:
        for event in pygame.event.get():
            if event.type == QUIT:
                pygame.quit()
                sys.exit
                close = True
        
        if close:
            break
        
        time_passed = clock.tick(30)
 
        if randint(1, 10) == 1:
            leaf = Leaf(world, leaf_image)
            leaf.location = vector2.Vec2d(randint(0, w), randint(0, h))
            world.add_entity(leaf)
 
        if randint(1, 100) == 1:
            spider = Spider(world, spider_image)
            spider.location = vector2.Vec2d(-50, randint(0, h))
            spider.destination = vector2.Vec2d(w+50, randint(0, h))
            world.add_entity(spider)
 
        world.process(time_passed)
        world.render(screen)
 
        pygame.display.update()
 
if __name__ == "__main__":
    run()


### 回答1: 《Python Pygame 游戏 -入门精通.pdf》是一本关于使用Python语言Pygame库编游戏的书籍。Python是一种简单易学的编程语言,具有丰富的库工具,非常适合初学者入门。而Pygame是为了方便开发2D游戏而设计的库,提供了丰富的函数类,可以帮助开发者轻松地创建游戏。 这本书的目标是帮助读者从游戏开发的基础知识入手,逐步了解PythonPygame的使用方法,并逐渐提高到精通水平。书中按照渐进式的学习方式,从基本的Python语法开始介绍,然后逐步引入Pygame库的功能特性。读者可以学习如何创建游戏窗口,绘制图形精灵,处理用户输入,实现游戏逻辑等。 此外,书中还涵盖了一些高级的游戏开发技术,比如碰撞检测、音效处理、动画效果物理模拟等。通过学习这些内容,读者将能够掌握更多复杂游戏的开发方法,并能够自己设计实现自己的游戏。 总的来说,《Python Pygame 游戏 -入门精通.pdf》是一本适合初学者有一定编程基础的读者学习游戏开发的书籍。读者可以通过学习这本书,掌握使用PythonPygame开发游戏的基本技能,从而进一步提升自己在游戏开发领域的能力。 ### 回答2: 《Python Pygame 游戏-入门精通》是一本关于使用Python编程语言Pygame游戏开发库来编游戏的指南。它逐步介绍了从入门精通的过程,并教会读者如何利用PythonPygame创建自己的游戏Python是一种简单易学的高级编程语言,被广泛应用于各种领域,包括游戏开发。Pygame是一个基于Python的库,专门用于开发2D游戏。它提供了许多功能强大的工具函数,可以帮助开发者处理游戏图形、声音、输入等方面的内容。 《Python Pygame 游戏-入门精通》一书首先向读者介绍了PythonPygame的基础知识,包括安装配置开发环境以及PythonPygame的基本语法功能。然后,它逐渐深入探讨了游戏开发的不同方面,包括游戏循环、图形绘制、碰撞检测、游戏物理等。书中使用了大量的示例代码实际案例来帮助读者理解应用所学知识。 通过学习《Python Pygame 游戏-入门精通》,读者将获得从入门精通游戏开发技能。他们将学会创建各种类型的游戏,从简单的益智游戏到复杂的角色扮演游戏。此外,书中还提供了一些高级技巧技术,如使用人工智能网络功能来增强游戏体验。 总之,这本书是一本全面而深入的学习资源,适合那些希望利用PythonPygame开发游戏的初学者有经验的开发者。它将引导读者从零开始掌握游戏开发的基本技能,并帮助他们创建自己的精彩游戏作品。 ### 回答3: 《PythonPygame游戏-入门精通.pdf》是一本专门介绍如何使用Python及其游戏开发库Pygame来编游戏的书籍。 Python是一种高级编程语言,易于学习使用。它具有简洁的语法丰富的标准库,可以进行各种编程任务,包括游戏开发。Pygame是一个基于Python的开源游戏开发库,提供了丰富的功能工具,方便开发者进行游戏的设计制作。 这本书从入门精通的目标,意味着它适合各种编程经验水平的读者。对于初学者,它会介绍PythonPygame的基本知识概念,例如变量、条件语句、循环函数等。然后,它将引导读者学习如何使用Pygame库中的各种功能模块来创建游戏窗口、处理用户输入、绘制图形等。通过实际的示例练习,读者可以逐步掌握游戏设计开发的基本技能。 对于有一定编程经验的读者,本书也提供了更高级的内容技巧,例如碰撞检测、动画效果、游戏物理学等。读者可以通过这些深入的学习,进一步提升自己的游戏开发能力,设计出更加有趣复杂的游戏。 总的来说,《PythonPygame游戏-入门精通.pdf》是一本对于想要学习如何使用PythonPygame游戏的读者来说非常有价值的书籍。通过它的指导,读者可以系统地学习游戏开发的基础知识技能,并逐步提高自己的水平,成为一名优秀的游戏开发者。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值