HLG1073之并查集

#include <iostream>  
#define N 50005  
using namespace std;  
  
int fa[N];          ///定义N个父节点  
int num[N];         ///用于记录每组有多少个对象  
  
void init(int n){  
    for(int i = 0; i < n; ++i)  
    {  
        fa[i] = i;  ///初始化每个对象的父节点是它本身  
        //num[i] = 1; ///每组的对象自然初始化为  --1  
    }  
}  
  
int find(int u)  
{  
    ///找此对象的祖先  
    if(fa[u] != u)  
    {  
        fa[u] = find(fa[u]);  ///如果当前不是他的祖先,就一直递归的找下去  
    }  
    return fa[u];             ///当找到他的祖先后返回祖先  
}  
  
void unin(int u, int v)  
{  
    int fau = find(u);      ///找对象u 的祖先将其值赋给 fau  
    int fav = find(v);      ///同上  
  
    if(fau == fav)  return ; ///如果u和v 是同一祖先 函数结束  
  
    fa[fav] = fau;           ///如果u和v 不是同一祖先 因为题目所说,他两现在有  
                            ///关系了,自然他们的祖先应该统一了  
    //num[fau] += num[fav];    ///将两组成员合并  
    //num[fav] = 0;  
                        ///自然将其一清零  
}  
  
  
int main()  
{  
    int n, m;  
    int x, y;  
    int cut;  
    while(cin >> n >> m)  
    {  
        init(n);  
  
        while(m--)  
        {  
            cin >> x >> y;  
            unin(x, y);  
        }  
        cut = 0;  
        int f0 = find(0);  
  
        for(int i = 0; i < n; ++i)  
            if(f0 == find(i))  
            cut++;  
  
        cout << cut << endl;  
    }  
  
    return 0;  
}  


记得这道题就是套模板

引用:OpenCvSharp是一个OpenCV的.Net wrapper,用于开发基于OpenCV的应用程序,它与原始的OpenCV更接近,并提供了详细的使用样例。 引用:对于使用OpenCV进行图像处理的代码示例,可以使用import numpy as np import cv2来导入OpenCV库,并使用cv2.imread、cv2.imshow等函数进行图像的读取和显示。 引用:如果想要使用OpenCV进行分类器的生成,可以使用opencv_traincascade.exe命令,并提供指定的参数,例如-data用于指定生成的分类器的保存路径,-vec用于指定正样本描述文件的路径,-bg用于指定负样本文件的路径,以及其他参数如numPos、numNeg、minHitRate等。 关于"opencv hlg"的问题,根据提供的引用内容,我没有找到与"opencv hlg"相关的具体信息。可能需要提供更多背景或上下文信息来解答该问题。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* [OpenCvSharp](https://download.csdn.net/download/qq_18865111/86722032)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *2* [python opencv 读取图片 存储图片](https://blog.csdn.net/weixin_41799483/article/details/80829825)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] - *3* [opencv分类器训练方法](https://blog.csdn.net/weixin_41799483/article/details/80567909)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 33.333333333333336%"] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值