poyla计数问题

关于poyla计数,首先推荐两篇比较好的文章

2001-----符文杰《poyla原理及其应用》

2008-----陈瑜希《poyla计数法的应用》

在然后就是自己的学习笔记啦,据说《组合数学》一书当中讲得比较好,不过没看过,有机会找来看看

关于知识点嘛,下面给出一些:

Pólya原理是组合数学中,用来计算全部互异的组合状态的个数的一个十分高效、简便的工具。
在介绍polya定理之前,先介绍几个概念
      群:给定一个集合G={a,b,c,…}和集合G上的二元运算,并满足:
(a) 封闭性:"a,bÎG, $cÎG,a*b=c。
(b) 结合律:"a,b,cÎG, (a*b)*c=a*(b*c)。
(c) 单位元:$eÎG,"aÎG, a*e=e*a=a。
(d) 逆元:"aÎG,$bÎG, a*b=b*a=e,记b=a-1。
则称集合G在运算*之下是一个群,简称G是群。一般a*b简写为ab。
          
       置换:n个元素1,2,…,n之间的一个置换 表示1被1到n中的某个数a1取代,2被1到n中的某个数a2取代,直到n被1到n中的某个数an取代,且a1,a2,…,an互不相同。
       置换群:置换群的元素是置换,运算是置换的连接。 
       循环:记 
称为n阶循环。每个置换都可以写若干互不相交的循环的乘积,两个循环(a1a2…an)和(b1b2…bn)互不相交是指ai!=bj, i,j=1,2,…,n。例如:

这样的表示是唯一的。置换的循环节数是上述表示中循环的个数。例如(13)(25)(4)的循环节数为3。

其实,polya定理是burnside引理的一种特殊情况。。。至于burnside引理,这就不详细探讨了。。。
下面直接给出polya定理的公式:

   设G是p个对象的一个置换群,用m种颜色涂染p个对象,则不同染色方案为:

      L=1/|G|(m^c(g1)+m^c(g2)+...+m^c(gs))

     其中G={g1,…gs}   c(gi )为置换gi的循环节数(i=1…s)

好了,下面上一些题目


由于poyla定理实在是不好理解,所以先上一个裸题,本人天资愚钝,裸题也是看了两天才会做的,poyla定理更是理解了好几天,希望做后面的题能顺点,废话不说看题

 1.poyla定理直接套公式类型

poj2409

链接:http://poj.org/problem?id=2409

题解:这是本人在实习阶段写的一道题

这两道题都是很裸的polya定理题,而且代码几乎一样,所以把他们放到一起。。。

         至于polya定理的理论部分,可以看我的上一篇blog。。。

         这两道题:

         对于旋转的情况:共有n个置换,其中旋转k个位置的置换的循环节数为gcd(n,k)。——(|)证明如下
         对于翻转的情况:若n为奇数,则对称轴过一顶点和一边中点,n种置换,循环节长度n/2+1;若n为偶数,对称轴有两种,过两点和过两边中点,两者各有n/2种置换,前者          循环节长度为n/2+1,后者为n/2。

         总共有2*n个置换。

         这部分也很好理解。。。接下来我要来证明一下(|)。。。

          假设旋转k个位置,因为polya定理要求在置换后元素不变的情况下每种置换的循环节数,所以当他旋转到他原来的位置时,

          所经过的点数既是n的倍数,又是k的倍数,且是n和k的最小公倍数,即lcm(n,k);

          因为每次旋k个位置,所以当前置换中循环的个数为lcm(n,k)/k;

          所以每个置换的循环节数=n/(lcm(n,k)/k)=gcd(n,k)。


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值