假设检验

假设检验

  我们先下来理解一下标准差和标准误差的概念。
  标准差是表示个体间变异大小的指标,反映了整个样本对样本增平均数离散程度,是数据精密度的衡量指标。
  标准误差反映样本平均数对总体平均数的变异程度,从而反映抽样误差的大小,是量度结果精密度的指标。样本越大,标准误差就越小,样本均值与总体均值也就越接近,使用se表示。

标准差: σ = ∑ ( x i − x ‾ ) 2 n σ = \sqrt{\frac{\sum_{(x_i-\overline x)^2}}{n}} σ=n(xix)2
标准误差: s e = σ n se = \frac{σ}{\sqrt{n}} se=n σ
样本标准差: s d = ∑ ( x i − x ‾ ) 2 n − 1 sd = \sqrt{\frac{\sum_{(x_i-\overline x)^2}}{n-1}} sd=n1(xix)2

注意:样本标准差跟样本的标准差是不一样的概念,不要混淆了,我们可以使用样本标准差来估算总体的标准差,一般地,我们可以认为样本标准差约等于总体的标准差,即 s d ≈ σ sd≈σ sdσ

一、 z检验

已知:
  实验的总体均值 μ \mu μ和标准差 σ σ σ
  实验的样本均值 x ‾ \overline x x和样本数 n n n

问题:
  实验前后均值差异是否显著?(实验是否有效果?)

解决方案:
  我们已经有了两组数据(如上),为了比较这两组数据的差异性,我们必须假设两组数据的分布是一样的,因此我们必须有一个假设,这个假设称为零假设 H 0 : H_0: H0:实验前后均值差异不显著。
  这个零假设让我们可以通过实验前的总体数据计算理想状态下样本(跟实验后样本量一样)的数据:
  中心极限定理认为总体均值和样本均值是一样的,所以理想状态下的样本均值 μ ‾ = μ \overline \mu = \mu μ=μ
  这里要求理想状态下的样本标准误差误差,所以样本标准误差应该由总体标准差得到: s e = σ n se = \frac{σ}{\sqrt{n}} se=n σ
  接下来,我们要比较一下实验后的样本均值跟理想状态下的均值的误差,我们不能直接使用它们的差当作误差,因为数据的分布不一样,差能表达的误差大小就不一样,所以我们应该将它们的差与标准误差的比来衡量均值的误差大小:
Z 统 计 量 = x ‾ − μ s e Z_{统计量}=\frac{\overline x - \mu}{se} Z=sexμ
这个值我们称为Z统计量。
  然后,我们还需要确定我们能接受的误差范围(确定 α \alpha α值),如果误差超出了这个范围,我们就认为样本均值跟总体均值差别太大,拒绝零假设,否则接受零假设。
  判断误差是否在误差范围内有两种方式:第一种是根据 α \alpha α水平找出 Z 临 界 值 Z_{临界值} Z,然后判断 Z 统 计 量 Z_统计量 Z是否超出 Z 临 界 值 Z_{临界值} Z,若超出就拒绝零假设。第二种是找出总体均值置信区间(这里可以找总体均值的置信区间,也可以找样本均值的置信区间): ( x ‾ − Z 临 ∗ s d , x ‾ + Z 临 ∗ s d ) (\overline x - Z_临*sd,\overline x + Z_临*sd) (xZsd,x+Zsd),然后判断总体均值是否在置信区间内,若不在置信区间内就拒绝零假设。

附上Z表格:
https://s3.amazonaws.com/udacity-hosted-downloads/ZTable.jpg

缺点:
  上面是通过总体,计算在理想状态下的样本数据,但大多情况下抽样都不会理想的,所以Z检验存在抽样误差

二、单样本t检验

已知:
  样本集
  总体均值 μ 0 \mu_0 μ0
检验:
  样本集均值与总体均值 μ 0 \mu_0 μ0差异的显著性

解决方案:
  这种情况,我们不知道总体的标准差,所以不能通过总体的标准差来求理想情况下样本的标准误差,但是我们可以计算出样本的理想总体。同样,我们需要定义零假设 H 0 : H_0: H0样本集均值与总体均值 μ 0 \mu_0 μ0差异不显著。
  贝塞尔校正认为,对n个样本进行抽样,其自由度为 d f = n − 1 df=n-1 df=n1,所以样本所有的理想总体的标准差为:
σ ≈ s d = ∑ ( x i − x ‾ ) 2 d f σ≈sd=\sqrt{\frac{\sum(x_i-\overline x)^2}{df}} σsd=df(xix)2
  该总体是理想情况下的,所以也会有总体的标准误差:
s e = σ n se=\frac{σ}{\sqrt{n}} se=n σ
  到这里,好像我们可以直接使用Z检验了,但是Z检验的总体方差是真实数据得到的,而这里的总体方差是通过样本计算出来的,二者的总体方差的设定不同,所以这里不能使用Z检验,这里要使用T检验。
  先计算出t统计量:
t 统 计 量 = x ‾ − μ 0 s e t_{统计量}=\frac{\overline x-\mu_0}{se} t=sexμ0
然后根据 α \alpha α水平、自由度df计算出 t 临 界 值 t_{临界值} t,最后的判断跟Z检验一样。
置信区间: ( x ‾ − t 临 界 值 ∗ s e , x ‾ + t 临 界 值 ∗ s e ) (\overline x-t_{临界值}*se,\overline x+t_{临界值}*se) (xtse,x+tse)

附上T表格:
https://s3.amazonaws.com/udacity-hosted-downloads/t-table.jpg

标准化差异度量:
C o h e n ′ s d = x ‾ − μ 0 S Cohen's d = \frac{\overline x - \mu_0}{S} Cohensd=Sxμ0

三、相依样本t检验

  两个样本相互影响,成对出现。
特征:
  1、对照实验组
  2、先验测试,后验测试
  3、随着时间推移的增长情况(纵向研究)

已知:
  两个相依样本集

检验:
  两个样本集的均值差异的显著性

解决方案:
  要对比相依样本集的均值差异的显著性,只要对比两个样本差集的均值与0的显著性就行了,求出差集之后,就是单样本t检验了。

不足:
  1、残留效应,相依样本可能会有残留效应,也就是第二次的试验结果可能受到了第一次试验的影响。

误差范围:
   t 临 界 值 ∗ s e t_{临界值}*se tse

四、独立样本t检验

独立样本的两个样本集的样本数可能不相等,所以这里要使用合并方差平方和( S P 2 SP^2 SP2)为总体的标准差,使用合并方差平方和( S P 2 SP^2 SP2)的条件:
  1、X、Y样本集来自两个独立总体的随机样本
  2、两个总体应该大概是正态的
  3、样本数据可以用来估计总体方差
  4、两个样本的总体方差大概相等

若认为两个样本集的样本数大致相等,可使用以下公式计算样本均值的标准误差:
S E = S x 2 n x + S y 2 n y SE = \sqrt{\frac{S_x^2}{n_x}+\frac{S_y^2}{n_y}} SE=nxSx2+nySy2

已知:
  两个独立样本集

检验:
  两个样本集的均值差异的显著性

解决方案:
  这两个数据集所在总体分布可能不一样,所以不能使用上面的方法进行验证。我们可以假设这两个数据集的总体是在一个更大的总体上,这个更大的总体就是两个数据集所在的总体的集合,那么这两个数据集就是在更大的总体上的两块抽样了。公式如下。

步骤:
  1、作出假设,定义零假设、对立假设和拒绝域
  2、计算两个样本集的差的平方和
S S x = ∑ i = 1 n ( x i − x ‾ ) 2 SS_x = \sum_{i=1}^{n}(x_i-\overline x)^2 SSx=i=1n(xix)2
S S y = ∑ i = 1 n ( y i − y ‾ ) 2 SS_y = \sum_{i=1}^{n}(y_i-\overline y)^2 SSy=i=1n(yiy)2
  3、计算总体的合并方差平方和
S P 2 = S S x + S S y d f , ( d f = d f x + d f y ) SP^2=\frac{SS_x+SS_y}{df},(df=df_x+df_y) SP2=dfSSx+SSy,(df=dfx+dfy)
  4、计算均值的校正标准误差
S E = S P 2 n x + S P 2 n y SE=\sqrt{\frac{SP^2}{n_x}+\frac{SP^2}{n_y}} SE=nxSP2+nySP2
  5、计算t统计量
t 统 计 量 = x ‾ − y ‾ S E t_{统计量}=\frac{\overline x - \overline y}{SE} t=SExy
  6、根据 μ \mu μ水平、自由度df计算出 t 临 界 值 t_{临界值} t
  7、作出决策

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值