泰勒公式

泰勒公式

泰勒公式就是用多项式函数去逼近光滑函数。

假设f(x)在 x=x0 x = x 0 处连续可导N阶,那么 (0!=1) ( 0 ! = 1 )

f(x)f(x0)0!+f(x0)1!(xx0)+f(x0)2!(xx0)2+...+fN(x0)N!(xx0)N f ( x ) 的 泰 勒 公 式 为 : f ( x 0 ) 0 ! + f ′ ( x 0 ) 1 ! ∗ ( x − x 0 ) + f ″ ( x 0 ) 2 ! ∗ ( x − x 0 ) 2 + . . . + f N ( x 0 ) N ! ∗ ( x − x 0 ) N

可简写成

n=0N(f(x0)n!(xx0)n) ∑ n = 0 N ( f ′ ( x 0 ) n ! ∗ ( x − x 0 ) n )

x0=0 x 0 = 0 时,称为麦克劳林级。

1、证明

f(x)=ex f ( x ) = e x 为例,证明泰勒公式:

f(x)=ex f ( x ) = e x ,那么 f(x)=ex f ′ ( x ) = e x ,所以 f(x)=ex f ( x ) = e x 在(-∞,∞)可以无限可导;
x0=0,e0=1 x 0 = 0 , 则 e 0 = 1 ,那么 f(x)=ex f ( x ) = e x 的泰勒公式为:

1+11!(x0)+12!(x0)2+...+1!(x0) 1 + 1 1 ! ∗ ( x − 0 ) + 1 2 ! ∗ ( x − 0 ) 2 + . . . + 1 ∞ ! ∗ ( x − 0 ) ∞
=1+x1!+x22!+...+x! = 1 + x 1 ! + x 2 2 ! + . . . + x ∞ ∞ !

接下来,让我们来看看 f(x) f ( x ) 、 二 阶 泰 勒 展 开 、 三 阶 泰 勒 展 开 、 四 阶 泰 勒 展 开 在(0,5)区间内的函数图吧:

如图所示,其中
线1对应着函数 ex e x
线2对应着函数 1+x1!+x22!+x33!+x44! 1 + x 1 ! + x 2 2 ! + x 3 3 ! + x 4 4 !
线3对应着函数 1+x1!+x22!+x33! 1 + x 1 ! + x 2 2 ! + x 3 3 !
线4对应着函数 1+x1!+x22! 1 + x 1 ! + x 2 2 !

可以看出,泰勒展开的阶数越高,越逼近原函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值