CLRS 3.1渐进记号

3.1-1

n1n2:f(n)0g(n)0for n>n1for n>n2

n0=max(n1,n2) ,则对 n>n0:
f(n)max(f(n),g(n))g(n)max(f(n),g(n))(f(n)+g(n))/2max(f(n),g(n))max(f(n),g(n))f(n)+g(n)

根据 Θ 的定义以及上式我们知, c1=12,c2=1
012(f(n)+g(n))max(f(n),g(n))f(n)+g(n)for n>n0

得证。

3.1-2
将此式二项式展开有 (n+a)b=(n0)nb+(n1)nb1b++(nn)n0bn ,舍掉低阶项即可。

3.1-3
O 表示一个上界,“至少”又意味着一个下界。

3.1-4
第一个成立,我们选择一个大于等于 2 的常数即可使得等式成立;
第二个不成立,因为 ∄c:2n2nc2n

3.1-5
f(n)=Θ(g(n)) ,根据定义我们有:

0c1g(n)f(n)c2g(n)for n>n0

我们选择此时的 c1,c2 即可得到 f(n)=O(g(n)),f(n)=Ω(f(n))
反之,若 f(n)=O(g(n)),f(n)=Ω(f(n)) ,根据定义则有:
0c3g(n)f(n)for n>n10f(n)c4g(n)for n>n2

n3=max(n1,n2) ,则对 n>n3:
0c3g(n)f(n)c4g(n)for n>n4

即得证。

3.1-6
Tb,Tw 分别表示最好和最坏运行时间,由题得:

0Twc1g(n)for n>n10c2g(n)Tbfor n>n2

所以得到
0c2g(n)TbTwc1g(n)for n>n0
其中, n0=max(n1,n2) ,另外 Tb 的运行时间肯定小于 Tw 。这样就得证明。

3.1-7
对任意的正数 c>0 有:

0f(n)<cg(n)for n>n10cg(n)<f(n)for n>n2

n0=max(n1,n2) 有: f(n)<cg(n)<f(n) ,显然矛盾,所以交集为空。

3.1-8

Ω(g(n,m))={f(n,m):c,n0m0使nn0mm0,0cg(n,m)f(n,m)}

Θ(g(n,m)={f(n,m):c1,c2,n0m0使nn0mm0,0c1g(n,m)f(n,m)c2g(n,m)})

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值